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ABSTRACT

The mass transfer across an air-water interface,

specifically, the  exchange of carbon dioxide between

the atmosphere and the sea surface, was investigated

by direct numerical simulation (DNS). As the

Schmidt number of carbon dioxide in the seawater is

known to be very high (~700), we have employed a

Lagrangian approach, which has been successfully

applied to the passive scalar transfer in DNS of tur-

bulent channel flow. The result obtained by this

method shows good agreement with the Eulerian

DNS data at a low Schmidt number (Sc = 1.0) and

also with experimental data at high Schmidt num-

bers (Sc = 100, 500, 1000).

Although the eddy diffusivity near a wall is de-

creased as increasing the Schmidt number, it does

not largely depend on the Schmidt number at a free

surface. This suggests that the correlation between

velocity and concentration fields near a free surface

is kept unchanged even at a very high Schmidt num-

ber at a free surface

INTRODUCTION

The gas transfer across an air-water interface

is a very important phenomenon in various engineer-

ing and environmental problems, such as, the physi-

cal process of chemical reactors, and the exchange

of slightly soluble gasses like O2 or CO2 between

the atmosphere and the oceans. Since the concentra-

tion boundary layer in the liquid phase is very thin

for such gases, it is important to investigate the fine-

scale turbulence structure and associated concentra-

tion field in the vicinity of the interface in order to

explore the detailed mechanism of gas transfer at the

air-water interface. However, the measurement of in-

stantaneous velocity and concentration fluctuations

near an interface is extremely difficult and the accu-

racy of experimental data available is in many cases

unsatisfactory.

 Recently, direct numerical simulation of open

channel flow has been carried out by several groups

[1, 2, 3] and they have shown the advantage of DNS

in clarifying the complex mechanism of mass trans-
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fer. In these pieces of work, it is found that the vorti-

ces generated at the bottom wall migrate to the free

surface, and that such quasi-streamwise vortices play

an important role in the interfacial mass transfer

across the free-surface.

 Most of theses simulations have dealt with the

liquid side turbulence without no wind shear. Con-

sidering real ocean surfaces, the interaction between

gas and liquid turbulent fields is not negligible, es-

pecially, for slightly soluble gases. Lombardi et al.

[1] have carried out DNS, in which the gas and liq-

uid sides are coupled each other without complexity

of  interface deformation .

In the present study, we also employ a DNS

code, with two fluid domains coupled through the

continuity of velocity and shear stress, to study the

mechanism of mass transfer across the interface. Al-

though DNS is a powerful tool to investigate the fine-

scale turbulence near the interface, the computational

load would be too large for Schmidt numbers as high

as those of O2 or CO2 in oceans or lakes. This is be-

cause the number of grids required to capture the

smallest scale of concentration field becomes unre-

alistically large. Therefore, in almost all the DNS of

free-surface turbulence, the Schmidt number has been

limited to the order of unity.

 Recently, Na et al. [4] have applied a

Lagrangian method, in which the mean concentra-

tion is calculated by the probability density function

of particle migration from a point source, to the pas-

sive scalar transfer in turbulent channel flow. Their

result is in good agreement with the Eulerian DNS

data at low Schmidt numbers and also with the ex-

perimental data for high Schmidt numbers.

Presently, the fully developed turbulence near

an interface between two flowing fluids is investi-

gated numerically to study the effect of Schmidt num-

ber on the mass transfer. For high Schmidt numbers

(Sc = 100, 500, 1000), the Lagrangian method is em-

ployed. Comparison between scalar transfer near a

wall and a free surface is also made.

NUMERICAL METHOD

In Fig. 1 the computational domain is shown.

The depth of both subdomains is d, and their hori-

zontal dimensions are 2.5pd and pd in the streamwise

and spanwise directions. Periodic boundary condi-

tions in the streamwise and spanwise directions are

imposed in each subdomain. The Reynolds number

(Ret = utd/n),  which is based on the depth of each

domain d, the friction velocity at the interface ut, and

the kinematic viscosity n, is 150 in both the liquid

and gas phases. The density ratio of the two fluids is

rL/rG = 841, which corresponds to air and water at

atmospheric pressure and about 320K.

Free-shear boundary conditions are applied at

the outer edge of each subdomain. At the interface of

two subdomains, continuity of the velocity, shear

stress, scalar concentration and scalar flux are im-

posed. The effect of interface deformation is not dis-

cussed because the experimental data of Komori et

al. [5] and the DNS of De Angelis and Banerjee [6]

showed that the effect of deformation on turbulent

field and mass transfer is negligible in a low-Reynolds

number turbulence as in this study.

 The governing equations for an incompress-

ible Newtonian fluid and its scalar field, i.e., the con-

tinuity, Navier-Stokes, and scalar transport equations,

are given as:

Fig. 1 Computational domain and coordinate system
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The pseudospctral method is used to discretize

the above equations in each domain. Fourier expan-

sions are employed in the streamwise, x, and

spanwise, z, directions, while Chebyshev expansion

in the y direction normal to the interface. The time

advancement is made by the second-order Adams-

Bashforth scheme for the convective terms and by

the Crank-Nikolson method for the viscous terms.

The simulation is carried out on a 64 x 48 x 64 grid

in each subdomain.

In order to satisfy the condition of shear stress

and velocity continuity at the interface, the fractional

time step method is used. For the first half time step,

one subdomain (the gas phase) is solved imposing

only continuity of the velocity at the interface, and

then for the second half time step, the other

subdomain (the liquid phase) is solved imposing con-

tinuity of the shear stress. The details of the numeri-

cal algorithm is found in Lombardi et al. [3].

In Fig. 2, the time-mean concentration profile

obtained by the Eulerian method is shown. In this

case, the Schmidt numbers in both subdomains are

1.0. The distance in the direction normal to the inter-

face y is nondimensionalized by the depth of the

subdomain  d,  wh i l s t  the  sca la r  f i e ld  i s

nondimensionalized by the concentration difference

between two outer edges of subdomains, DC. Al-

though the Schmidt numbers are the same (ScG = ScL

= 1.0), the most of concentration change occurs on

the liquid side. From this result, it is expected that

the resistance to the mass transfer at an interface is

much larger in the liquid phase than in the gas phase.
Fig. 3 Limiting behavior of turbulent statistics

 near the interface

Fig. 2 Profile of time-mean concentration
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concentration fields at high Schmidt numbers by the

Eulerian method is very limited because the number

of grid points required to capture the smallest scalar

scale increases. In Lagrangian method the trajecto-

ries of scalar markers released at the initial time t0
from a point source are calculated in DNS.

Each marker moves due to convective and

molecular effects. The convective effect is calculated

from a fluid velocity at the marker’s location. The

effect of molecular motion is simulated by imposing

a three-dimensional random walk on the particle

motion and it is added to the convective motion at

each time step. The magnitude of random walk is

calculated from a Gaussian distribution with zero

mean and standard deviation s, which is given by

the time step Dt and the Schmidt number as flows:

s =
2

Sc
tD (2)

Sample particle trajectories are used for calcu-

lating the probability density function (PDF) of P(x-

x0, y, z-z0: t-t0) where presents the ensemble average

of markers released instantaneously from a point

source. The distribution of the mean concentration

over a plane source is calculated by integrating the

probability function P over time and plane as:

      

P y P x x y z z t dxdzdt
xzt

*
, , ;( ) = - -( )

•••

ÚÚÚ 0 0

000

(3)

Applying the Lagrangian approach, the calcu-

lations can be performed for Sc much higher than in

the Eulerian method. However, in the Lagrangian

method, it is necessary to prepare sufficiently fine

grids for accurately obtaining a steep distribution of

temperature field in the vicinity of the boundary. The

details on this point are found in Papavassiliou and

Hanratty [7].

In Fig. 3, the limiting behavior of turbulent sta-

tistics near the interface in the liquid phase is shown.

In Case 1 the concentration fields are solved in both

the gas and liquid phases, but in Case 2 only the con-

centration field of the liquid phase is solved with the

constat concentration condition imposed at the inter-

face. The latter adhoc assumption is intended to re-

duce the computational load. The distance from the

interface y+ is nondimensionalized by the liquid-

phase friction velocity at the interface ut and the ki-

nematic viscosity n. Within y+<1.0, the effect of the

different boundary conditions on the concentration

fluctuation C_rms and turbulent scalar flux u’c’ is

discernible, but another scalar flux v’c’ normal to the

interface is unchanged. Therefore, this difference of

the scalar boundary condition hardly affects the mean

concentration profile and the mass transfer rate. As a

result, it can be said that the constant concentration

condition is satisfied at the interface in the case of

low Schmidt numbers.

With increasing the Schmidt number in the liq-

uid phase, the resistance to the absorption is more

dominated by the liquid side, and if so, the constant

concentration condition at the interface can be veri-

fied for investigating the liquid side transfer mecha-

nism. From this result, we presently assume the con-

stant  concentration at the interface for high Schmidt

numbers, and solve only the liquid side concentra-

tion, although we solve the coupled velocity fields

for both sides. Imposing this assumption, the com-

parison between scalar transfer near a wall and a free

surface at the constant scalar boundary condition is

also made.

LAGRANGIAN METHOD

The Lagrangian method developed by

Papavassiliou and Hanratty [7] has been applied to a

passive scalar transfer at high Schmidt numbers in

DNS of turbulent channel flow [4]. Calculating the
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Fig. 4 Mean concentration at low Schmidt numbers

Fig. 5 Mean concentration at high Schmidt numbers

LAGRANGIAN SIMULATION OF CHANNEL

FLOW

To compare the effect of Schmidt number on

the mass transfer in wall turbulence and free surface

turbulence, passive scalar transfer in fully developed

turbulent channel flow is calculated at high Schmidt

numbers (Sc = 100, 500, 1000) by mean of the

Lagrangian method. The calculation is done with a

128 x 64 x 128 grid. Cubic spline fitting is used for

interpolating Eulerian velocity grid data. The details

of particle tracking method can be found in Mizuya

and Kasagi [8], and Kontomaris and Hanratty [9].

The Reynolds number based on the half height of

the channel and the friction velocity is 150. Constant

concentration conditions are imposed at both walls.

160,000 markers are released from a 400 x 400 grid

that covers the bottom wall.

In Fig. 4, the Lagrangian and Eulerian results

for Sc = 0.1 and 0.71 are compared. They show very

good agreement. The Lagrangian results of mean con-

centration distributions at high Schmidt numbers are

shown in Fig. 5. In these cases (Sc = 100, 500, 1000),

the conductive sublayer remains in the region of

y+<1.0, and the most concentration change occurs in

the region of y+<10.

With the Schmidt number increased, the con-

centration boundary layer becomes so thin that the

turbulent structure in the immediate vicinity of the

wall governs the mass transfer. To study the turbu-

lent velocity and concentration fields near the wall,

the limiting behavior is discussed below. If the fluc-

tuating velocity and concentration fields are expanded

in Taylor series, the following equations are obtained

for a given Schmidt number:

        u x y z t x z t y x z t y, , , , , , ,( ) = ( ) ◊ + ( ) ◊ +a a1 2

2 L (4a)

        v x y z t x z t y x z t y, , , , , , ,( ) = ( ) ◊ + ( ) ◊ +b b2

2

3

3 L (4b)

        w x y z t x z t y x z t y, , , , , , ,( ) = ( ) ◊ + ( ) ◊ +g g1 2

2 L (4c)

        c x y z t c x z t y c x z t y, , , , , , ,( ) = ( ) ◊ + ( ) ◊ +1 3

3 L (4d)

      uv y y= ◊ + + ◊ +a b a b a b1 2

3

1 3 2 2

4 L (4e)

      cv c y c y= ◊ + ◊ +1 2

3

1 3

4b b L (4f)

Because of the continuity condition at a no-

slip and non-permeable wall, the velocity fluctuation

normal to the wall varies quadratically with the dis-

tance from the boundary. The nondimensionalized

eddy diffusivities for momentum and scalar, can be

expanded in the same manner. If we consider only

the first term of Taylor series for the vicinity of the

wall, the nondimensionalized eddy diffusivity for

momentum Ev+ and eddy diffusivity for scalar Ec+,

are given as flows:
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    Ev y+ = ◊a b1 2

3 (5a)

    
Ec

c

Sc
y+ = ◊1 2 3b

(5b)

The analogy between momentum and scalar

transfer requires Ec+ varying as y+3 and the propor-

tionality constant which is independent of the

Schmidt number. This analogy has been widely used

for predicting heat or scalar transfer in wall turbu-

lence. Using this analogy, the averaged scalar trans-

fer equation is given as flows:

    
1

1 1 3= - +Ê
ËÁ

ˆ
¯̃

= - + ◊Ê
ËÁ

ˆ
¯̃

+

SC
Ec

dC

dy SC
A y

dC

dy
(6a)

    
A

c

Sc
const= =1 2b

(6b)

This averaged scalar transport equation gives the

nondimensionalized mass transfer rate, K+= K/ut,

which is proportional to Sc-2/3.

 In Fig. 6, the limiting behavior of the eddy

diffusivities for scalar Ec+ for Sc = 1.0 by the Eulerian

method and at high Schmidt numbers by the

Lagrangian method is shown. The eddy diffusivity

for momentum Ev+ is also presented. The two kinds

of eddy diffusivities become the same at Sc = 1.0,

because the complete analogy of governing  equa-

tions and boundary conditions for the velocity and

scalar fields is satisfied.

With the Schmidt number increased, the eddy

diffusivity for scalar  decreases in the vicinity of the

wall. It means the analogy between the momentum

and scalar transfer does not hold in turbulent chan-

nel flow. This result agrees with Na et al. [4, 10],

who performed DNS of passive scalar transfer in fully

developed turbulent channel flow for Schmidt num-

bers up to 10. From these results, it is concluded that

the mass transfer rate would not be exactly propor-

tional to Sc-2/3 for very high Schmidt numbers.

The mass transfer rate, K+, is represented as a

function of Sc in Fig. 7. The symbols are results from

Fig. 6 Limiting behavior of eddy diffusivities

at different Schmidt number

Fig. 7 Mass transfer rate as a function of Pr or Sc

the present study of the Lagrangian method and the

broken line represents the relation by Shaw and

Hanratty [11] from their measurements of mass trans-

fer in a pipe over a range of Schmidt numbers of 693

to 39,300. The dash-dotted line represents the rela-

tion from the DNS at low Schmidt numbers by Na et

al. [4]. The mass transfer rate from the present study

is proportional to Sc-0.698 for high Sc numbers (the

solid line), and this fact is consistent with the calcu-

lations by Na et al. [4], but contradictory to the clas-
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Fig. 8 Mean concentration near the air-water interface

Fig. 9 Limiting behavior of eddy diffusivities

near the air-water interface

sical theory based on the analogy between momen-

tum and scalar transfer.

LAGRANGIAN SIMULATION OF GAS-LIQ-

UID TURBULENCE

According to the discussion in the proceeding

section, the analogy between momentum and scalar

transfer is not satisfied in wall turbulence at high

Schmidt numbers, and the proportional constant of

eddy diffusivity largely depends on the Schmidt num-

ber. Therefore, it is of interest to know whether these

same conclusions are applicable to sheared, air-wa-

ter interfaces.

 To study the mass transfer at high Schmidt

numbers (Sc = 100, 500, 1000), the Lagrangian

method is applied to a DNS of the gas-liquid turbu-

lence. The domain geometry and the numerical

schemes for the velocity field and particle tracking

are the same as described. We impose constant con-

centration condition at an interface, and only solved

the concentration field in the liquid phase.

 In Fig. 8, the profiles of mean concentration

are shown. The concentration boundary layers at a

free surface are almost ten times thinner than those

at a wall at the same Schmidt numbers. It is reflect-

ing the fact that for this rage of Schmidt numbers,

the mass transfer rates at a free surface are about ten

times larger than those at a wall (see, Figs. 7 and 10).

Equations (4a-f) of the limiting behavior of

turbulent quantities for a wall are modified for a free

surface as follows:

               u x y z t x z t x z t y, , , , , , ,( ) = ( ) + ( ) ◊ +a a0 1 L (7a)

       
        v x y z t x z t y x z t y, , , , , , ,( ) = ( ) ◊ + ( ) ◊ +b b1 2

2 L (7b)

              w x y z t x z t x z t y, , , , , , ,( ) = ( ) + ( ) ◊ +g g0 1 L (7c)

       
        c x y z t c x z t y c x z t y, , , , , , ,( ) = ( ) ◊ + ( ) ◊ +1 2

2 L (7d)

      uv y y= ◊ + +( ) ◊ +a b a b a b0 1 0 2 1 1

2 L (7e)

      cv c y c c y= ◊ + +( ) ◊ +1 1

2

1 2 2 1

3b b b L (7f)

Since the fluid velocity has a non-zero value at the

interface, the velocity normal to the interface varies

linearly rather than quadratically. If we take into ac-

count only the first term of Taylor series, the eddy

diffusivities for momentum and scalar near the inter-

face are represented as flows:

    Ev y+ = ◊a b0 1
(8a)

    
Ec

c

Sc
y+ = ◊1 1 2b

(8b)

where the limiting behavior of eddy diffusivity for

momentum is different from that of eddy diffusivity

for scalar. Thus, the analogy between momentum and

scalar transfer does not hold in the vicinity of the
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interface.

Figure 9 shows the limiting behavior of eddy

diffusivity for scalar for a low Schmidt number

(Sc=1.0) by the Eulerian method and those at high

Schmidt numbers (Sc=100, 500, 1000) by the

Lagrangian method. With increasing the Schmidt

number, the value of eddy diffusivity for scalar

slightly deceases near the interface. However, the

results do not show strong dependence on the Schmidt

number unlike the results in Fig. 6. The limiting be-

havior of eddy diffusivity in the conductive sublayer

(y+ < 0.1) could not be obtained, because in the

Lagrangian method, the eddy diffusivity is calculated

from the profile of the mean concentration instead of

direct measurements of Reynolds transport [10].

However, the eddy diffusivity in the conductive

sublayer does not affect mean concentration profile

and mass transfer rate. Therefore, the eddy diffusivity

for scalar, Ec+ µ y+2, as well as the proportionality

constant is independent of the Schmidt number, are

confirmed in the vicinity of the interface. It is de-

duced that the mass transfer rates are proportional to

Sc-0.5 for high Schmidt numbers at a free surface.

In Fig. 10, the mass transfer rates are repre-

sented as a function of the Schmidt numbers. The

experimental data for high Schmidt numbers have

been compiled by Hanratty [12] as:

      
K

K

u
ScL+ -= = ◊

t

0 12 0 15 0 5
. ~ .

.

(9)

De Angelis and Banerjee [6] performed DNS of a

passive scalar in a coupled gas-liquid turbulence for

Schmidt number up to 100. They also obtained the

relation between the mass transfer and the Schmidt

number as:

      
K

K

u
ScL+ -= = ◊

t

0 108 0 158 0 5
. ~ .

.

(10)

Calmet and Magnaudet [13] carried out a Large Eddy

Simulation of a free surface turbulence for Ret=1280

and Sc = 200. These data are also plotted in Fig.10

Fig. 10 Mass transfer rate as a function of Schmidt number at

the air-water interface

for comparison.

Although the present condition of the calcula-

tion is different in the Reynolds number and the

boundary condition, the results obtained agree well

with the previous results. The classical theory can be

applied to a gas-liquid interface, and the mass trans-

fer rate is proportional to Sc-0.5 even at high Schmidt

numbers.

VISUALIZATION OF TURBULENCE STRUC-

TURES

To study the relationship between turbulent

structures and mass transfer, flow visualization was

performed with a conditional sampling method based

on particle locations. A total of 1000 particles were

released from a wall and also from an interface. If a

particle passes though a prescribed horizontal plane

(x-z plane) located at a certain distance from a wall

or an interface, the flow field around the particle was

sampled and ensemble average of the samples was

calculated in order to clarifying the vortex structures

which contribute to the mass transfer.

The Schmidt numbers of particles were as-

sumed as Sc = 100 in both  wall turbulence and free
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surface turbulence. In the case of gas-liquid turbu-

lence, the x-z planes for sampling particles were lo-

cated at y+= 0.3, 1.15, and 1.78, which correspond to

Fig.11 Ensamble-averaged velocity field around a

marker which passes y+ = 0.3 plane

from the air-water interface

Fig.12 Ensamble-averaged velocity field around a

marker which passes y+ = 0.65 plane

from the air-water interface

Fig.13 Ensamble-averaged velocity field around a

marker which passes y+ = 1.78 plane

from the air-water interface

Fig.14 Ensamble-averaged velocity field around a

marker which passes y+ = 1.0 plane

from the wall

Fig.15 Ensamble-averaged velocity field around a

marker which passes y+ = 5.0 plane

from the wall

Fig.16 Ensamble-averaged velocity field around a

marker which passes y+ = 10.0 plane

from the wall

inside the sublayer, the middle of concentration

boundary layer, the outer concentration boundary

layer, respectively. In the case of wall turbulence, the
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x-z planes for conditioning were located at y+ = 1.0,

5.0, and 10.0.

In Figs. 11, 12, and 13, the ensemble-averaged

flow fields in the y-z plane (normal to the streamwise

direction) around sampled makers are shown for gas-

liquid turbulence. At y+=0.3, this region is located

inside the conductive sublayer (see Fig. 8), so that

the mass transfer is mainly governed by the molecu-

lar diffusion rather than turbulent transport. As in-

creasing the distance from the interface, a pair of

streamwise vortex structures appears beneath an in-

terface, which is identified to play an important role

in transferring scalar.

In Figs. 14, 15, and 16, the ensemble-averaged

flow fields in the turbulent channel flow are shown.

Like in the gas-liquid flow,  as increasing the dis-

tance from the wall, the streamwise vortex structure

appears more clearly in the vicinity of the wall. In

wall turbulence, however, the effect of vortex struc-

ture on the mass transfer is rapidly decreasing  as

approaching to the wall, because the no-slip condi-

tion is imposed at the wall (see Fig. 14). On the other

hand, in the gas-liquid flow, the vortex structure be-

neath the interface generates strong horizontal ve-

locity fluctuations near the interface, which certainly

generates strong velocity fluctuations normal to the

interface. This velocity fluctuation normal to the in-

terface should play an important role in transferring

scalar in the vicinity of an interface, especially at high

Schmidt numbers. Therefore, the high Schmidt num-

ber mass transfer is prompted more in gas-liquid tur-

bulence than in wall turbulence.

CONCLUSIONS

Direct numerical simulation of the coupled gas-

liquid turbulent flow was carried out. With the

Lagrangian method, the mean concentration profiles

and mass transfer rates at high Schmidt numbers were

calculated. The results obtained in the present study

agree well with the previous experimental and nu-

merical data.

At a solid wall, the wall limiting value of eddy

diffusivity for scalar is decreasing with the Schmidt

number increased; this results in the fact that the anal-

ogy between momentum and scalar transport does

not hold, so that the mass transfer rate is not exactly

proportional to Sc-2/3. On the other hand, in the vi-

cinity of a gas-liquid interface, the dependance of

the limiting value of eddy difusivity on the Schmidt

number should be negligibly weak. Therefore, using

the classical theory, the mass transfer rates are pro-

portional to Sc-0.5 even at high Schmidt numbers.

From the visualization of ensemble-averaged

flow fields, it is confirmed that the streamwise vor-

tex structures induce the velocity fluctuations even

in the close vicinity of the gas-liquid interface. This

fact explains why the mass transfer rates at a gas-

liquid interface are much larger than those at a solid

wall for high Schmidt numbers.
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