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Turbulent momentum and heat transfer in ducts of rhombic cross section
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Abstract. Direct numerical simulation of fully developed turbulent velocity and temperature fields in rhombic ducts
with five different acute angles, q, are carried out.  The Reynolds number Re

b
 based on the bulk mean streamwise

velocity and the hydraulic diameter, and the Prandtl number are about 4470 and 0.71, respectively.  The mean streamwise
velocity and associated mean secondary velocity vectors are obtained at each q.  The systematic change of the secondary
flow pattern in the rhombic ducts is clarified.  As q is decreased, a pair of counter-rotating vortices are distorted near the
acute angle corner, and they eventually break up into two pairs at q  = 30 .  It is found that the square duct of q  = 90  gives
the best heat transfer performance among the rhombic ducts tested.  The dissimilarity between momentum and heat
transfer exists and is stronger near the acute corners than near the obtuse ones.  This is caused by the dissimilarity
inherent in the velocity and thermal boundary conditions, and also by the streamwise velocity decelerated by the corner
effect, particularly at the acute corners.  For designing thermal mechanical equipment, the duct that has only obtuse
corners would be more efficient than that with acute corners.

1. Introduction

Turbulent heat transfer is of great importance in a wide range of engineering applications.  In many turbomachines
and heat exchangers, conduits of various cross sectional shapes are being used to improve the heat transfer and pressure
loss.  For instance, if we consider a general design strategy of parallel-flow type heat exchangers, its goal would reduce
to the optimal partition of the whole cross sectional area of a heat exchanger, where some technologically plausible
division shapes should be examined and assessed.  They may be parallel, triangular, rectangular and hexagonal parti-
tions, which have different apex angles.  Given the available pumping power, we should find out the best cross section
shape that could achieve the maximum heat exchange.  Among feasible shapes, we pay attention to a square and its
derivatives, i.e., rhombuses, in the present work.

It is generally known that a solid wall makes Reynolds stresses anisotropic and inhomogeneous through its no-slip
and impermeable conditions.  In non-circular ducts, anisotropic and inhomogeneous near-wall stresses would then cause
secondary flows of the Prandtl’s second kind, and consequently alter the turbulence structure.  Their effect on momen-
tum and heat transfer is significant.  Hence, it is also important to understand the underlying physical mechanism of such
wall effects and to develop reliable turbulence models.

Over the decades, a number of numerical and experimental investigations have been carried out to explore the
effect of the walls on turbulent flow and temperature fields.  However, most of them are concerned with a single plane
boundary, which does not involve geometrical complexity such as corners, apexes and wavy walls.  Studies on turbulent
flow in a non-circular duct are relatively few.  For instance, Gavrilakis (1992) and Huser and Biringen (1993) performed
direct numerical simulation (DNS, hereafter) of fully developed turbulent flows in a square duct at low Reynolds num-
bers.  They clarified the influence of the duct corner on the stress anisotropy and discussed the origin of the secondary
flow.  However, there seems to be no literature reporting DNS data of associated turbulent temperature field.  As for
experimental studies, there are only two on a smooth square duct reported by Brundrett and Burroughs (1967) and Hirota
et al. (1997), while others seem to have paid more attention to a rough-wall duct.  Despite these investigations, the
understanding of the effect of the presence of two intersecting walls on turbulent transport mechanism is neither com-
plete nor satisfactory.

From the above background, the basic knowledge on the momentum and heat transfer characteristics of various
non-circular conduits is needed.  Hence, we study the fully developed turbulent velocity and temperature fields in square
and rhombic ducts, where the corners of different angles would cause distinct wall effects.

2. Numerical Procedure

The flow geometry and the coordinate system are shown in Fig. 1.  The computational details are summarized in
Table I.  DNS is carried out in five different rhombic ducts.  The acute angle q is changed from 90 degrees of a square
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duct to 75, 60, 45 and 30 degrees.  The computational domain
length and the hydrodynamic diameter D, i.e., the duct width, 2d,
are kept constant.  The Reynolds number Re

b
 based on the bulk

mean streamwise velocity U
b
 and D is set to be about 4470, al-

though a slight difference in U
b
 exists.  The intention to keep Re

b

almost constant is that the ratio between the mass flow rate and
the wall perimeter length should remain nearly equal for evaluat-
ing purely the effect of the cross-section shape on momentum and
heat transfer.  No-slip condition is imposed on the walls, while the
periodic condition is applied at the streamwise boundaries.  The
time increment is chosen so as to keep the Courant number about
1.  The statistics are calculated over the integration time span of
about 9000ut

2/n except for q = 30, for which the integration is
about 6000ut

2/n because of its heavy computational load.  Note that  ut and n  denote the friction velocity and kinematic
viscosity, respectively.  As shown in Table I, the streamwise and spanwise grid spacings, Dx+ and Dd+, are about 18 and
less than 7, respectively. The latter is made finer than those used in the authors’ previous simulation (Fukushima &
Kasagi, 2001), because the calculated flow and heat transfer properties in rhombic ducts are found sensitive to the grid
refinement.  Variables normalized by the wall variables, ut, n and Tt are hereafter denoted by superscript +.

Temperature is considered as a passive scalar with the Prandtl number of the fluid being 0.71.  As thermal bound-
ary conditions, the cooling rate is constant along the duct axis with the wall peripheral temperature being constant
(Kasagi et al., 1992).  Thus, the difference between the bulk-mean and wall temperatures is always kept constant.  This
corresponds to the “thermally thick” wall, of which “dimensionless wall condition parameter,” f = kwt / kf D, is infinitely

large (Gyves et al., 1999) and thermal activity ratio, K c k c kf pf f w pw w= ( ) ( )r r/ , is infinitesimal (Kasagi et al.,
1989).  Here, k, r, cp and t are the thermal conductivity, the density, the specific heat at constant pressure and the duct wall
thickness,  with subscripts w and f denoting wall and fluid, respectively.

The Navier-Stokes and energy equations are integrated in time by using the fractional step method (Kim & Moin,
1984).  For time advancement, the third-order Runge-Kutta (Spalart et al., 1991) and Crank-Nicolson schemes are
employed for the advection and viscous terms, respectively.  The spatial discretization is made by a second-order finite
volume method using a collocated mesh system in the generalized curvilinear coordinate system.

3. Results and Discussion

3.1 Mean friction and heat transfer properties

The friction factor and the Nusselt number are defined as f u Ub= 8 2 2
t /  and Nu hD k f= / , respectively.  Their

mean values, f
0
 and Nu

0
, which have been obtained by averaging local f and Nu over the side length, are given in Table II.

In order to compensate a slight difference in the bulk Reynolds numbers among these data, the ratio of Nu
0
/(f

0
 Reb) is also

listed in Table II.   For comparison, the DNS result of a circular duct at Reb = 4300 (Satake et al., 2000) is included.  All
these quantities

 
are also presented as functions of Reb in Figs. 2(a) and (b), where the Petukhov and Gnielinski empirical

equations of  f
p
, Nu

p
 and Nu

g
 for a smooth circular duct (Bhatti & Shah, 1987) are compared.  In Fig. 2(a), DNS data of

f
0
 in a square duct (Gavrilakis et al., 1992; Huser & Biringen, 1993) are also plotted, and it is found that the present value

of f
0
 is very close to the result of Gavrilakis et al. (1992).

 The friction factor f
p
 of Petukhov is in good agreement with Satake et al. (2000) and also with the experiment of

180° θ

Lx

Ld

Lh x1

x3

x2Flow

θ

Figure 1 Flow geometry and coordinate system.

Reb Lx x Lh x Ld Nx x Nh x Nd Δx+ Δh+ Δd+

Present Study

Rhombic (θ = 90°) 4477 5π x 2 x 2 128 x 85 x 85 18.65 0.196-5.00 0.196-5.00

(θ = 75°) 4466 5π x 2 x 2.07 128 x 85 x 85 18.59 0.194-4.99 0.201-5.16

(θ = 60°) 4470 5π x 2 x 2.31 128 x 85 x 85 18.34 0.191-4.92 0.221-5.68

(θ = 45°) 4472 5π x 2 x 2.82 128 x 85 x 85 17.79 0.186-4.78 0.262-6.74

(θ = 30°) 4478 5π x 2 x 4 128 x 107 x 107 17.30 0.181-3.21 0.361-6.42

Table I Basic computational conditions.
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Isshiki et al. (1993) in a circular duct, although f
p

slightly overpredicts at lower Reb.  In Fig. 2(b),
the Nusselt umber Nu

g 
of Gnielinski is in excel-

lent agreement with the experiment at higher Reb,
whereas both Nu

p
 and Nu

g
 are smaller than corre-

sponding DNS at lower Reb.  Especially, Nu
g

shows a tendency to underestimate heat transfer
in the lower Reb range.  Hereafter, the Petukhov
equations are used as a reference.

Comparing f
0
 and Nu

0 
in the five different

rhombic ducts, it is clear that both values decrease
appreciably as the acute apex angle q is decreased.

Note that Nu
0
 of a square duct is smaller than that of a circular duct, and this fact is also confirmed in a higher Reb

experiment (Brundrett & Burroughs, 1967).  In Fig. 3, the three ratios of  f
0 
/ f

p
, Nu

0
/Nu

p
 and Reynolds analogy factor, (j

0

/ f
0
) / (j

p 
/ f

p
) are shown against q .  Here, j is defined as StPr2/3.  The systematic changes are obvious;  f

0 
/ f

p
 and Nu

0
/Nu

p
 do

not change much from q  = 90  to q = 75 , but decrease rapidly from q =75  down to q =30 .  The decrease rate of f
0 
/ f

p
 is

smaller than that of Nu
0
/Nu

p
, so that (j

0 
/ f

0
) / (j

p 
/ f

p
) also decreases with q .  Note that the values of (j

0 
/ f

0
) / (j

p 
/ f

p
) at q  = 90

and 75  are slightly smaller than and almost equal to that in a circular duct at Reb = 4300 and 5286, respectively.
Three other heat transfer performance indicators for compact heat transfer surface configurations have separately

been compared between five rhombic ducts; that is, the volume (f Re
b
/j2) and the total heat transfer area (f1/2 /j3/2) at a

constant pumping power PP and a constant number of transfer units Ntu; and Ntu, which is equivalent to (j/(fRe
b

2)), at
constant D and PP (Cowell, 1990).  All indicators show the same tendency that the square duct, q  = 90 , should give the
best performance among the present five rhombic ducts in terms of heat transfer augmentation.

3.2 Mean velocity and temperature fields

Rhombic duct flows are characterized by the existence of a pair of counter-rotating vortices, i.e., the secondary
flow of the Prandtl’s second kind at each corner in the cross stream plane.  Figures 4(a)-(e) illustrate the variation of the

Reb Re
τ

f0 Nu0 Nu0 / (f0 Reb ) Ub Tb Uc/Ub Tc/Tb

Present Study

Rhombic (θ = 90°) 4477 304 0.0371 15.15 0.0912 14.68 14.29 1.31 1.21

(θ = 75°) 4466 303 0.0369 15.00 0.0910 14.72 14.35 1.31 1.21

(θ = 60°) 4470 299 0.0358 14.43 0.0901 14.94 14.72 1.32 1.22

(θ = 45°) 4472 290 0.0337 13.33 0.0883 15.40 15.47 1.34 1.24

(θ = 30°) 4478 282 0.0318 11.73 0.0860 15.86 16.36 1.38 1.26

Satake et al , 2000

Circular 4300 300 0.0395 15.7 0.0924 14.75 1.31

Table II Comparison of mean flow properties between rhombic and circular ducts.

Figure 2 Dependence of a) friction factor f0  and b) Nusselt number Nu0  on bulk Reynolds number, Re
b
.
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mean secondary velocity vectors at different acute angles, q.  These vectors have been obtained by averaging over time,
streamwise direction and all quarters.  It is well known that in the square duct (q  = 90 ), a pair of vortices appear in every
corner because of the duct symmetry as shown in Fig. 4(a).  The centers of vortices in the present study are slightly closer
to the corner than those in Gavrilakis et al. (1992).

As can be seen in Figs. 4(a)-(e), the configuration of symmetric counter-rotating vortices in the square duct has
been replaced by those of non-symmetric skewed vortices in the rhombic ducts.  Near the corners of acute angle, a pair
of distorted counter-rotating vortices appear with their centers located further away from the corner as q is decreased.
They eventually break up into two pairs at q = 30 , the centers of which are located around x

2
/d = 1.45 and 2.35.  On the

other hand, near the corners of the obtuse angle, there appear a pair of somewhat smaller, but more circular counter-
rotating vortices, of which the centers are closer to the corner.  The maximum secondary velocity near the acute angle
corners is larger than that near the obtuse angle corners.  However, the vortices near the acute corners can not intrude
deep into the corner.  These facts imply that the enhancement of turbulent heat and momentum transfer by the secondary
flow is stronger near the obtuse corners than near the acute ones.

The magnitude of the maximum secondary velocity is about 2% of the bulk mean velocity Ub in all ducts tested.
It occurs near the vortices closest to the acute angle corners on the corner bisectors except for the square duct, in which
it appears near the wall between the corner bisector and the wall bisector.  The maximum value is 2.03% of Ub and
slightly larger than 2.00% on the corner bisector.  In the rhombic ducts, the maximum values are 2.04%, 2.17%, 1.83%
and 1.93% of Ub at q  = 75 , 60 , 45  and 30 , respectively.  The value on the corner bisector once increases from q  = 90
to 60 , decreases from q  = 60  to 45 , and then increases at q  = 30 , where a vortex pair breaks up into two as mentioned
above.

The effects of these secondary flows on the mean streamwise velocity, U/Ub, and the mean temperature field, T/Tb,
are shown in Figs. 5(a)-(e).  These values have also been averaged over time, streamwise direction and all quarters.  Since
the induced secondary flow transports efficiently high-momentum and high-temperature fluid from the center to the
corner of the duct, the contours of both U/Ub and T/Tb are distorted accordingly.  The distortion of T/Tb contours is
somewhat smaller than that of U/Ub.  Similar phenomena have also been observed in the experiment of a square duct at
a higher Reynolds number by Hirota et al. (1997).  These results suggest that the enhancement of heat transfer by the
secondary flow is weaker than that of momentum transport.  As the acute intersecting angle becomes smaller, the defor-
mation of T/Tb appears more smaller than that of the U/Ub.  The difference, however, can hardly be found near the obtuse
corner.

3.3 Local friction and heat transfer characteristics
The distributions of local friction factor and Nusselt number are represented in Fig. 6(a), where both are non-

dimensionalized by the values of the Petukhov correlation and plotted against the distance from the acute angle corner,
x

2
/d.  The considerable decrease of  f/f

p
 and Nu/Nu

p
 near the acute angle corner with the decrease of q is found.  This
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Figure 4 Mean secondary velocity vectors:  (a) q = 90 ; (b) q = 75 ; (c) q = 60 ; (d) q = 45 ; (e) q = 30 .
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results in f
0 
and Nu

0
, which

 
are smaller in the rhombic ducts with smaller q.  Thus, near the acute angle corners, the

enhancement of momentum and heat transfer by the secondary flow should not be superior to the corner suppression
effects of Reynolds stresses and turbulent transport.

The dissimilarity between local momentum and heat transfer in five types of rhombic ducts is illustrated in Fig.
6(b), where (j/j

p
) / (f/f

p
) has a plateau near unity.  There is small variation in this value, i.e., 1.06 in the square duct, 1.05

in the circular duct at Reb = 5286 (Satake et al., 2000), and 1.09 in the rhombic duct of q  = 30 .  Although the value near
the obtuse angle corner approaches a constant value asymptotically, it decreases markedly near the acute angle corner.
This implies that the net enhancement of heat transfer by the secondary flow is achieved near the obtuse corners, but not
near the acute corners.

Finally, the effect of the thermal boundary condition is considered.  In the present study, an axially constant heat-
transfer rate per unit length with a constant peripheral wall temperature is assumed.  This boundary condition can be
interpreted such that temperature is driven by a force, the distribution of which in the cross stream plane is equal to that
of the streamwise velocity (see, e.g., Kasagi et al., 1992).  Note this velocity is driven by the pressure gradient, which is
almost uniform in the cross stream plane.  These facts result in inferior heat transfer properties near acute angle corners,
where the streamwise velocity is much decelerated.

In order to confirm the above hypothesis, additional DNS (on a coarse grid) is carried out in the square duct with
the above thermal boundary condition and also with a different boundary condition that heat is generated uniformly in
fluid and removed from walls (Kim & Moin, 1989).  The latter ideal boundary condition is analogous to that for the
velocity field, although it is not realistic.  As a result, with the new thermal boundary condition, the dissimilarity between
momentum and heat transfer appears less, and Nu

0
 becomes slightly larger (~1%) .  This suggests that the dissimilarity is

mostly attributed to the difference in the boundary conditions for the velocity and temperature fields.
From a viewpoint of heat transfer equipment design, it is generally concluded that ducts which have only obtuse

angle corners should be more efficient than those with acute angle corners.  For example, a hexagonal duct with only
obtuse corners may give better heat transfer properties than a circular duct.

4. Conclusions
We have simulated the fully developed turbulent velocity and temperature fields in five types of rhombic ducts

with acute angles of q = 90, 75, 60, 45 and 30 degrees to examine the effects of walls on momentum and heat transfer.
The thermal boundary condition is given as an axially constant heat-transfer rate per unit length with constant peripheral
wall temperature.

The square duct with q =90  gives the best heat transfer performance among the five rhombic ducts tested.  The
symmetric counter-rotating vortices in the square duct are replaced by the non-symmetric skewed vortices in the rhom-
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bic ducts.  Near the corners of acute angle, a pair of distorted counter-rotating vortices appear.  Those vortices are even
more strongly distorted and finally break up into two pairs in the duct of q  = 30 .  Near the obtuse corners, however, there
appear somewhat smaller counter-rotating vortex pairs.  As a result, both friction factor

 
and Nusselt number in the

rhombic duct become smaller with smaller q.  Thus, the enhancement effect of the secondary flow is not more than the
suppression effect of the acute angle corner.

The dissimilarity between momentum and heat transfer exists and is stronger near the acute corners than near the
obtuse ones.  This is caused by the dissimilarity inherent in the velocity and thermal boundary conditions with the
streamwise velocity decelerated by the corner effect, particularly at the acute corners.  For designing thermal mechanical
equipment, the duct that has only obtuse corners would be more efficient than that with acute corners.
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