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Abstract. A three-dimensional particle tracking velocimeter (3-D PTV) was ap-
plied to air flow measurement in a strongly curved U-bend of a square cross-section.
He-filled neutral-buoyant soap bubbles were employed as a flow tracer, and turbulent
statistics including all Reynolds stress components were measured. The pressure-
induced secondary flow, of which magnitude reached about 30% of the bulk mean
velocity, was observed. The present experimental result is mostly in good agreement
with the LDA data at higher bulk-mean Reynolds number taken by Chang et al.
(1983). The effect of the secondary flow on the production mechanism of turbulent
kinetic energy as well as on the distributions of the invariants of stress anisotropy
tensor was examined in detail.
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1. Introduction

Turbulent flow in conduits of complex geometry is often encountered
in engineering equipment, such as fluid machinery and heat transfer
devices. It is well known that the mean fluid motion perpendicular
to the streamwise direction is generated in such conduits due to two
different mechanisms, i.e., the secondary flows of Prandtl’s first and
second kinds. For instance, the secondary motion of Prandtl’s first kind
is caused by cross-stream pressure gradient in curved ducts, and its
magnitude can be as large as 20–30% of the streamwise mean velocity.
On the other hand, the secondary motion of Prandtl’s second kind
observed in non-circular ducts is caused by the inhomogeneity of the
Reynolds stresses. The magnitude of this kind is very small, and of the
order of 2–3% of the streamwise mean velocity. Since these secondary
motions significantly affect heat and momentum transport processes, it
is indespensible to understand the underlying physical mechanism and
to develop a turbulence model that can predict them with reasonably
high accuracy for various engineering applications.

In the last few decades, a number of investigations have been carried
out both experimentally and numerically in order to examine the origin
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of the secondary motion (e.g., Perkins, 1970; Melling and Whitelaw,
1976; Humphrey et al., 1981; Taylor et al., 1982; Demuren and Rodi,
1984; Choi et al., 1990; Sudo et al., 1998). Chang et al. (1983) employed
laser-doppler anemometry (LDA, hereafter) to measure the develop-
ment of a turbulent flow in a square-sectioned U-bend. They provided
detailed experimental data and showed that the strong secondary flow
produces a very complex three-dimensional flow structure, although
the flow remains unseparated. The most notable feature of their ex-
perimental result is that there exist marked troughs in the streamwise
velocity halfway around the bend. Iacovides et al. (1990) made a hot-
wire anemometry (HWA, hereafter) measurement in a curved duct
having the same bend geometry with a shortened inlet section, and
reported that the effect of the inlet boundary layer thickness is minor.
Azzola et al. (1986) found in their LDA measurement that the magni-
tude of secondary flow in a curved circular pipe is smaller than that
in the corresponding curved square duct. Brundrett and Baines (1964)
employed HWA and obtained all Reynolds stress tensor components
in a turbulent straight square duct flow. Gavrilakis (1992) and Huser
and Biringen (1993) separately made a direct numerical simulation
(DNS, hereafter) of turbulent square duct flow, and obtained detailed
turbulent statistics.

Recent development in digital image processing has enabled us to
make field measurement of flow velocity (e.g., Adrian, 1991). Among
various techniques, three-dimensional particle tracking velocimetry (3-
D PTV, hereafter) has a great advantage of obtaining instantaneous
vector distributions in a 3-D volume (Nishino et al., 1989; Kasagi and
Nishino, 1992; Sata and Kasagi, 1992; Maas et al., 1993; Malik et al.,
1993; Guezennec et al., 1994). It has already been successfully applied
to various turbulent water flows (e.g., Nishino and Kasagi, 1989; Ni-
nomiya and Kasagi, 1993; Suzuki and Kasagi, 1994; Sata and Kasagi,
1995; Kasagi and Matsunaga, 1995; Suzuki et al., 1999). However,
only a few attempts have been made in air flows, although air flow
measurement is of great importance in many engineering applications.

Sata et al. (1994) has developed a 3-D PTV system for air flow
measurement, and applied it to the turbulent flow in a straight square
duct. In the present study, their results are used to evaluate the per-
formance of the present 3-D PTV system in air flow. A turbulent air
flow in a square cross-sectioned curved duct is then measured, and the
effect of streamline curvature on the turbulent statistics is investigated
quantitatively. The production mechanism of turbulent kinetic energy
and the distributions of invariants of the stress anisotropy tensor are
also examined in detail.
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2. 3-D particle tracking velocimetry (3-D PTV)

The 3-D PTV used in the present study was originally developed by
Nishino and Kasagi (1989), Kasagi and Sata (1992) and Sata and
Kasagi (1992) for liquid flow measurement, and modified by Sata et
al. (1994) for air flow measurements. The technique is characterized by
its use of three TV cameras that observe tracer particles suspended in a
flow field from arbitrary viewing directions. Three velocity components
are simultaneously measured by tracking each particle in a 3-D volume.

The present measurement system shown in Fig. 1 is composed of
three CCD cameras, three laser disk recorders (Sony LVR-5000), a
digital image processor (Nexus 6810, 512x480 pixels, 8bit gray level),
three stroboscopes, and a timing signal generator. A series of TV frames
taken by the cameras is consecutively recorded onto the laser disks. At
the data reduction stage, replayed images are A/D converted by the
image processor and then transferred to a workstation, where pho-
tographic coordinates and 3-D trajectories of the tracer particles are
calculated. Details of camera calibration and particle tracking proce-
dures can be found in Kasagi and Nishino (1992) and Sata and Kasagi
(1992), respectively. Since the flow velocity is generally small in liquid
flow experiments, a single stroboscope synchronized with the vertical
drive (60 Hz) was employed in previous studies. A primary system
modification by Sata et al. (1994) for air flow measurement is its use
of multiple stroboscopes and the timing signal generator for reducing
the time interval of the successive particle images.

Figure 2 shows the time sequence of image acquisition and illumina-
tion used in the present study schematically. One stroboscope is flashed
before a vertical blanking period during the former TV field, while two
stroboscopes are flashed during the latter field. Therefore, three succes-
sive instantaneous particle images at time intervals, ∆t1 and ∆t2, can
be projected on two successive TV fields that compose one TV frame.
The third pulses of the strobo light are employed in order increase
the number of velocity vectors measured, since the number density of
tracers in the present study is fairly low as described below. The time
interval can be selected arbitrarily from 60 µs to 1/30 s and is chosen in
such a way that the displacement of successive particle images becomes
20–50 pixels on the image plane.

3. Tracer particle

Tracer particles for turbulence measurement should have high frequency
response to velocity fluctuations, and their diameter d should be smaller
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than the turbulent micro scales (Kasagi and Nishino, 1992) if possible.
Melling (1997) made an extensive review on tracer particles for both
gas and liquid flows, and showed that various kinds of particles having
several microns in diameter can be used for particle image velocimetry
(PIV) measurement in air flows. However, particles having a much
larger diameter are required for the present 3-D PTV system in or-
der to obtain high accuracy in the photographic coordinates of the
particle image (Nishino et al., 1989). Kato et al. (1992) and Adachi
et al. (1993) employed plastic capsules (d = 50µm) as tracer particles.
They obtained the turbulent statistics of a turbulent boundary layer
and flow over a backward-facing step, both of which are in accordance
with the previous studies.

Sata et al. (1994) examined two kinds of tracer particles; one is
sphere plastic capsule (Expancel, Japan Ferrite Co., Ltd.) and the other
is He-filled soap bubble (bubble, hereafter). Characteristics of these
tracer particles are summarized in Table 1. The density of the plastic
capsule is about 30 times larger than that of air. It is relatively easy to
feed plastic capsules into a flow field and obtain high number density
in the measurement volume. On the other hand, the bubble is almost
neutrally buoyant, whilst its diameter is relatively large (0.5-1 mm)
and the resultant number density is likely to remain small (Kent and
Eaton, 1982).

Figure 3(a) shows a typical raw image of plastic capsules (Sata et
al., 1994). Each particle is clearly seen, although many particles adhere
to the wall due to static electricity as shown in the bottom part of the
figure. Sata et al. (1994) concluded that spurious velocity vectors were
significantly increased, since the images of particles adhered to the wall
overlap those in the flow domain on the image plane. Figure 3(b) shows
a typical image of bubbles. Each trajectory appears as six brightness
points, which are actually three pairs of reflection points from the
triple stroboscope flashes. Each pair of bright spots corresponds to the
location where the incident light reflects on the inner and outer surface
of the bubble (Oakley et al., 1997). The centroid of each bubble on
the image plane is determined as the mid point of the neighboring two
brightness peaks. Figure 4 shows the probability density of the distance
between brightness peaks on particle images presently obtained. Since
the most probable distance is around 9 pixels, pairs of brightness peaks
located within 11 pixels are considered to be subject to a single bubble.

Mei (1996) proposes the equation of motion for particles, in which
the drag force, the added-mass force, and the pressure-gradient force are
considered, and derives the frequency response function of particles to
periodic fluid motions. According to his formula, the relative amplitude
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of particles η can be written as,

η =

√
(1 + ε)2 + (ε+ 2/3ε2)2

(1 + ε)2 + {ε+ 2/3ε2 + 4/9(ρ− 1)ε2}2
, (1)

where ρ(= ρp/ρf ) is the density ratio of the particle and the fluid, and

ε =
√
πfd2/(4ν). (2)

Figure 5(a) shows the frequency response of particles. Since the density
of plastic capsules is very large, their traceability is decreased rapidly
with increasing frequency. On the other hand, the bubble having almost
neutral density shows a good frequency response; η at f <1kHz is
more than 0.95 and 0.9 for bubbles having a density ratio of 1.1 and
1.2, respctively. Under the experimental condition in the curved duct
described below, the Kolmogrov length and time scales are estimated
to be about 130 µm and 900 Hz (1.1 ms), whereas the turbulent macro
scales defined by the turbulent kinetic energy and the dissipation rate
are about 12 mm and 60 Hz (17 ms), respectively. Sata et al. (1994)
showed in their experiment that the traceability of both tracer particles
is sufficient for the measurement of low-order turbulent statistics such
as the mean and rms velocities, since most of the turbulent energy is
included in turbulent motion of larger scales.

Figure 5(b) shows the radial terminal velocity of tracers due to the
centrifugal force in a curved flow, where U , r and g are the streamwise
velocity, the radius of the curved flow and the gravitational acceleration,
respectively. The drag coefficient of the particle is assumed as

CD = 24(1 + 0.15Re0.687
p )/Rep, (3)

where Rep is the particle Reynolds number (Clift et al., 1978). In the
present experimental condition, U2/(rg) is about 6, so that the radial
velocity urg of bubbles (d=1mm) is less than 0.5 % of U when the
density ratio is adjusted to be less than 1.1. On the other hand, urg of
the plastic capsule (d = 100µm) is more than 1.5 % of U . A preliminary
flow visualization showed that the plastic capsules (d = 100µm) were
concentrated in the outer region of the bend. Although the plastic cap-
sules having a diameter of 50µm have good traceability, but their image
intensity would be too low for the strobo scopes presently employed.

Therefore, we have chosen bubbles as a flow tracer in the present
study, since plastic capsules have two drawbacks, i.e., their adhesion to
the wall and the large radial velocity induced in curved flows.
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4. Experimental setup

Figure 6 shows a schematic of the curved air duct having a square cross-
section. The hydraulic diameter H is 71 mm. The mean radius of the
bend was chosen as Rc = 3.35H, which was the same as that of Chang
et al. (1983). The test section was located 90 degrees downstream of the
bend inlet, and the bottom half of the duct was measured by employing
two measurement volumes covering the inner and outer regions of the
bend. A glass plate was mounted on the top wall, and three CCD
cameras were settled above the bend as shown in Fig. 7. Illumination
was applied through the outer side wall of the bend, which was made of
plexiglass. As shown in Fig. 7, the origin of the coordinate system was
chosen at the center of the duct, and θ, r and z denote the tangential
(streamwise), radial and vertical directions, respectively.

Figure 8 shows the locations of wall pressure taps. The static pres-
sure was measured by using a precision pressure sensor. Figure 9 shows
the distribution of the pressure coefficient Cp defined by

Cp =
p− pref

ρU2
m

, (4)

where Um denotes the bulk mean velocity, while the reference pressure
pref was defined as the static pressure 8H upstream of the bend inlet.
The dimensionless radial position r∗ is defined as:

r∗ =
r − ri
ro − ri

, (5)

where ro and ri denote the outer and inner radius, respectively. When
the bulk Reynolds number Rem(= UmH/ν) =56200, Cp in the outer
region is somewhat smaller than the data of Chang et al. (1983) for
Rem=56700, although the overall behavior is in good agreement with
their result. For a lower Reynolds number of Rem=17600, the distribu-
tion remains unchanged qualitatively, although the drop in Cp in the
streamwise direction becomes larger as in a curved pipe (Ito, 1959).

Since the velocity vectors obtained by 3-D PTV were located ran-
domly in the measurement volume, they were grouped into small data
cells depending on their 3-D location. Then, the turbulent statistics
were calculated as ensemble averages of velocity vectors in each cell.
The dimension of the data cell the θ, r, and z directionsin were respec-
tively ∆θ=1 degree, ∆r=2 mm, ∆z=2 mm.

According to ANSI/ASME PTC 19.1-1985, the uncertainties asso-
ciated with the instantaneous velocities measured were estimated at 95
% coverage (Nishino et al., 1989); uθRSS= 0.01Um, urRSS= 0.01Um,
and uzRSS= 0.04Um in the θ, r, and z directions, respectively.
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5. Reevaluation of turbulence statistics in square duct by
Sata et al. (1994)

Sata et al. (1994) compared their 3-D PTV results in a straight square
duct with their own HWA data, and confirm the reliability of their mea-
surement technique. In this section, their measurement results with 3-D
PTV are repeated and compared with the previous data. In their ex-
periment, the hydraulic diameter H was 71 mm, and a test section was
located 71H downstream from the inlet, where the flow was fully devel-
oped. The data set measured with bubbles is used for the present com-
parison. The centerline velocity was set to be U0=5.0 m/s, which cor-
responds to Rem=18900. The time interval between the strobo flashes
was chosen as ∆t1 = 960µs (see Fig. 2) , while the third flash in the
latter image field was omitted. On average, 9 vectors were measured
per frame, and 4x105 vectors in total were obtained. The number of
velocity vectors in each data cell was 1000–1500.

Figure 10 shows contours of the streamwise mean velocity U nondi-
mensionalized by Um. The 3-D PTV data by Sata et al. (1994) are in
good agreement with the LDA data of Brundrett and Baines (1964),
although their Reynolds number (Rem =83000) is much larger than
that of Sata et al. (1994). Demuren and Rodi (1984) claimed that
bulging of the velocity contours towards corner, which is caused by
the secondary flow, becomes less evident, if the developing region is
not long enough. The measurement result indicates that flow reaches a
fully-developed state in the test section at X/H = 71.

Figure 11(a) shows the magnitude of the secondary flow along the
corner bisector. The magnitude obtained by Sata et al. (1994) is about
1–1.5 % of Um and in accordance with the LDA data of Brundrett
and Baines (1964). The DNS data of Huser and Biringen (1993) at
Rem=10320 rapidly decrease near the center of the duct. Streamwise
counter rotating vortices characterizing the flow are well captured as
shown in Fig. 11(b). The center of the vortical motion is located at
around (y/(H/2), z/(H/2)) = (−0.75,−0.3). On the other hand, the
DNS data of Huser and Biringen (1993) and Gavrilakis (1992) at lower
Reynolds numbers give vortices located closer to the corner, i.e., at
around (y/(H/2), z/(H/2)) = (−0.5,−0.2), which is consistent with
the smaller secondary flow near the center of the duct.

The rms velocity fluctuations along the wall bisectors are shown in
Fig. 12. The data of Sata et al. (1994) are generally in good accordance
with the HWA data of Fujita et al. (1989) at Rem=65000 and the LDA
data of Brundrett and Baines (1964).

Figure 13 shows contours of urms/Um. As reported previously by
several investigators, isolines of urms are distorted toward the corner
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due to the secondary flow along the corner bisector. Again, the data
of Sata et al. (1994) are in reasonable agreement with the data of
Brundrett and Baines (1964), although contours of the former results
are somewhat less distorted.

As a whole, the measurement data of Sata et al. (1994) in a straight
air duct are in good accordance with the previous results, although
the tracer particle employed does not have sufficient traceability to the
turbulence micro scales, but to the energy containing turbulent scales.
This fact encourages us to apply the 3-D PTV system to a turbulent
air flow in a curved duct as shown in the following section.

6. Turbulence statistics in square cross-sectioned curved
duct

In the present measurement, the bulk mean velocity Um is 3.65 m/s,
which corresponds to Rem= 17400 and the Dean number defined by

De =
√
H/(2Rc) (6)

is 6720. The time intervals between the strobo flashes are chosen as
∆t1 = ∆t2 = 480µs. Particle images are captured for about 24 minutes
at each measurement volume. On average, 16 vectors per frame are
measured, and 1.4x106 vectors in total were obtained. The sample size
in each data cell is 200–800. Despite the relatively small sample size, the
ensemble-averaged turbulence statistics reasonably converge as shown
below, since the time period of the measurement is about 5 order of
magnitudes larger than the largest time scale of the flow field.

Distributions of the mean tangential velocity Uθ at 90 degrees down-
stream of the bend inlet are shown in Fig. 14. A marked trough in Uθ

is observed at a normal distance of about 0.3H from the inner wall as
reported by Chang et al. (1983), although their Reynolds number is
about 3 times larger than the present one. Note that the present data
are larger in most part of the cross section than those of Chang et al.
(1983). This discrepancy is partly due to some error in the bulk mean
velocity they used, since they separately measured Uθ and Um. On the
other hand, Um in the present study is determined by integrating Uθ

over the bottom half of the cross-section; Um thus obtained changes
only by 0.1% at θ=89, 90, and 91 degrees.

Figures 15–17 show the distribution of the secondary flow in the
cross-stream plane. A strong inward secondary flow as large as 0.1–
0.3Um is found at |z/(H/2)| > 0.8, and it is compensated with the
moderate outward flow of 0.05–0.1Um at |z/(H/2)| < 0.6. The vertical
velocity Uz is negative at r∗ < 0.2 and reaches its maximum value of
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0.2Um near the inner wall. A large clockwise vortical structure can be
seen in Fig. 15, while another small counter-clockwise vortex is also
observed close to the centerline near the inner wall.

The divergence of the mean velocity vector D,

D =
1
r

∂Uθ

∂θ
+
Ur

r
+
∂Ur

∂r
+
∂Uz

∂z
, (7)

is calculated by using a 2nd-order central difference scheme on the
present data cells, and nondimensionalized with the magnitude of the
inflow rate per unit volume,

M = {|Uθ∆r∆z| + |Urr∆θ∆z| + |Uzr∆θ∆r|}/(r∆θ∆r∆z). (8)

Although it is not shown here, D/M is found to be less than 0.04 except
in the vicinity of the inner and outer walls, where the accuracy of the
velocity gradients is deteriorated. Therefore, the mean velocity field
presently obtained satisfies the continuity equation reasonably well.

Huser et al. (1994) reported that the distributions of the Reynolds
stress budget terms remain unchanged in the straight duct except near
the corner. However, this is not the case for the curved duct due to
the presence of the strong secondary flow; the turbulent fluctuations
are significantly increased especially away from the duct wall. Figures
18–20 show the distribution of RMS velocity fluctuations. For an in-
compressible flow of constant physical properties, the production terms
in the Reynolds normal stress transport equations in the cylindrical
coordinates lead to

Pθθ = −2u2
θ

1
r

(∂Uθ/∂θ + Ur) − 2uθur(∂Uθ/∂r) − 2uθuz(∂Uθ/∂z), (9)

Prr = −2uθur
1
r

(∂Ur/∂θ − Uθ) − 2u2
r(∂Ur/∂r) − 2uruz(∂Ur/∂z), (10)

and

Pzz = −2uθuz
1
r

(∂Uz/∂θ) − 2uruz(∂Uz/∂r) − 2u2
z(∂Uz/∂z). (11)

In the present study, each term in Eqs. (9)–(11) is evaluated and its
contribution to the total production rate is examined. Note that the
third order spline functions are employed to smooth irregular data
points in the distributions of the turbulent statistics when the budget
terms are calculated. Figure 21 shows contours of the production terms
Pθθ, Prr, and Pzz nondimensionalized with (U3

m/H).
Among the production terms in the θ direction, the shear production

terms of −2uθur(∂Uθ/∂r) and −2uθuz(∂Uθ/∂z) are dominant near the
side and bottom walls, respectively and uθ,rms becomes large near the
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wall as shown in Fig. 18. The magnitude of uθ,rms near the outer wall
is larger than that near the inner wall, and this tendency is pronounced
near the symmetry plane (z=0). On the other hand, due to the trough
in Uθ, there exists regions of large ∂Uθ/∂r or ∂Uθ/∂z at |z/(H/2)| < 0.5
and r∗ < 0.5, where uθ,rms is increased. A peak in uθ,rms at r∗=0.4–0.45
near the symmetry plane is also observed by Chang et al. (1983). In the
radial direction, −2uruz(∂Ur/∂z) is dominant near the bottom wall due
to the strong inward secondary motion, while −2u2

r(∂Ur/∂r) becomes
large near the outer wall. As a result, ur,rms is as large as 0.1Um in
these regions, but it is decreased near the inner wall due to the negative
production −2u2

r(∂Ur/∂r) there. The present data near the symmetry
plane are much larger than those of Chang et al. (1983). It is also noted
that the local minimum of their data in ur,rms is not reproduced in the
present experiment. Since −2u2

z(∂Uz/∂z) becomes large near the inner
wall, uz,rms is markedly increased at r∗ < 0.3. This is the opposite
trend to the other two components. On the other hand, −2u2

z(∂Uz/∂z)
is negative near the outer wall, where large magnitude of uz,rms might
be maintained though the convection and/or pressure-strain correlation
terms.

Figure 22 shows the distributions of the Reynolds shear stress. In
the straight duct (Sata et al., 1994), uxuz is positive at r∗ > 0.5 and
negative at r∗ < 0.5 as in the fully-developed turbulent channel flow.
In the curved duct, however, uθur exhibits a different trend; uθur is
positive in the most part of the duct and becomes markedly large near
the outer wall. On the other hand, the other components uθuz and uruz

are positive near the outer and bottom walls and negative near the
inner wall, respectively. The region of large negative uθuz at around
(r∗, z/(H/2)) = (0.4,0.3) leads to the substantial production in the
tangential direction as shown in Fig. 21(a).

Figure 23 shows the profiles of the second and third invariants of
the anisotropy tensor (Lumley, 1978), which are defined as:

II = −bijbji/2, (12)

and
III = bijbjkbki/3, (13)

where,
bij = uiuj/ukuk − δij/3 (14)

The third invariant is positive in most of the flow domain, which cor-
responds to the nozzle-type flow (Lumley, 1978). In the straight duct
(Sata et al., 1994), II and III respectively become large negative and
positive values near the wall, so that the flow field approaches to one-
component turbulence toward the wall. The flow field becomes almost
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isotropic in the center of the duct, where the absolute values of II and
III are small. In the curved duct, the behavior of II and III near
the inner and bottom wall is similar with that in the straight duct,
while their magnitude is somewhat decreased near the outer wall. On
the other hand, the flow field near the symmetry plane around r∗=0.4–
0.45 becomes more anisotropic due to the large production of uθ,rms in
this region.

Figure 24 shows contours of the flatness parameter A (Lumley,
1978),

A = 1 + 9II + 27III. (15)

In the straight duct (Sata et al., 1994), A becomes somewhat large
along the corner bisectors, while the contours near the wall are almost
parallel to the wall. On the other hand, the distribution of A in the
curved duct exhibits a different trend; there exists a local minimum in
A near the center of the duct. At r∗=0.1–0.2 and |z/(H/2)|=0.6–0.8, A
becomes as large as 0.9, the flow field near the corner of the inner-wall
side is close to isotropic.

7. Conclusion

A three-dimensional particle tracking velocimeter was applied to the
turbulent air fow measurement in a strongly curved U-bend. He-filled
soap bubbles were employed as a flow tracer in order to reduce the
unwanted effect of the centrifugal force on particle trajectory. Turbulent
statistics measured are generally in good accordance with the LDA
data of Chang et al. (1983) at higher bulk-mean Reynolds number.
Each production term in the Reynolds normal stress transport equa-
tions were evaluated, and the production mechanism of the turbulence
kinetic energy was examined. In the tangential direction, substantial
production exists near the symmetry plane as well as near the wall. The
horizontal and vertical components also have large production induced
by the strong secondary flow near the bottom and inner walls, respec-
tively. Therefore, the distributions of invariants of the stress anisotropy
tensor are markedly modified in the curved duct, i.e., the region near
the symmetry plane becomes more anisotropic, while the region near
the inner corner is close to an isotropic state.
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Table 1  Characteristics of tracer particles

Drawback
Limitation in number

density
Adhesion to wall

Two Peaks
in brightness

Clear

0.5~1mm< 100µm

~1~30

Tracer Image

Diameter

Density Ratio to Air

BubblePlastic Capsule
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Fig. 1  3-D PTV system
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Fig. 2  Time sequence of the image acquisition
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Fig. 3 Typical raw image of particles.  (a) Plastic capsules (Sata et al., 1994), (b)Bubble particles.
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Fig. 4 Probability density of distance between a pair of brightness peaks.
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Fig. 5  Particle traceability.  (a)Particle response in one-dimensional oscillating flow, (b)Radial velocity

of tracers in curved flow.
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Fig. 6 Experimental setup.
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Fig. 8 Pressure tap locations in the curved duct.
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Fig. 9  Streamwise distribution of pressure coefficient in the curved duct.
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Fig. 10   Contours of mean streamwise velocity U (Sata et al., 1994)..  Broken contours denote data by

Brundrett & Baines (1964).
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Fig. 11  Mean velocity in the cross stream plane  (Sata et al., 1994). (a)Magnitude of the secondary

flow along the corner bisector, (b)Secondary velocity vectors.
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Fig.12  Distributions of velocity fluctuations along the wall bisector.
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Fig. 13  Contours of streamwise RMS velocity fluctuation  urms/Um (Sata et al., 1994).  Broken

contours denote data by Brundrett & Baines (1964).
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Fig. 14 Mean  tangential velocity.  (a)Contours, (b)Velocity profiles at five elevations from the bottom

wall.
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Fig. 15  Mean  velocity vectors in the cross-stream plane.
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Fig. 16  Mean radial velocity profiles at five elevations from the bottom wall.
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Fig. 17  Mean vertical velocity profiles at five elevations from the bottom wall.
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Fig. 18  Distributions of tangential RMS velocity fluctuations.  (a)Contours, (b)Profiles at five elevations

from the bottom wall.
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Fig. 19  Distributions of radial RMS velocity fluctuations.  (a)Contours, (b)Profiles at five elevations

from the bottom wall.
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Fig. 20  Distributions of vertical RMS velocity fluctuations.  (a)Contours, (b)Profiles at five elevations

from the bottom wall.
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Fig. 21  Contours of the production terms in the transport equation of the Reynolds normal stresses.

Broken lines denote negative contours.  (a) Tangential, (b) horizontal, (c) vertical component.
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Fig. 22  Reynolds shear stress distributions.   (a)Contours of u urθ , (b)Profiles of u urθ  at five elevations

from the bottom wall (Broken lines denote experiment data u ux z  of Sata et al. (1994) in a straight

square duct), (c)Contours of u uzθ , (d)Contours of u ur z .
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(c)

(d)

Fig. 22 (c), (d)
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Fig. 23  Profiles of invariants of anisotropy tensor at five elevations from the bottom wall.  (a) Secont

invariant, (b) Third invariant.
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(b)

Fig. 23 (b)
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(a)

(b)

Fig.24  Contours of flatness parameter, A.  (a) Straight duct  (Sata et al., 1994), (b)Curved duct.
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