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Abstract

The Reynolds-number dependence of the drag reduction achievable by diminishing to zero the near-wall

turbulent velocity fluctuations is clarified. This reduction could be obtained by a virtual active feedback

control system. The formula derived suggests that large drag reduction can be attained even at high Reynolds

numbers if turbulence fluctuations adjacent to the wall are completely damped. For example, 35% drag

reduction rate can be obtained at Reτ � 105 if the turbulence only below y� � 10 vanishes. Thus, the

active feedback control strategy, which has been studied mostly at low Reynolds numbers, would be much

promising even in high Reynolds number flows of real applications. Results from the direct numerical

simulation of turbulent channel flow at a Reynolds number of Reτ � 642 are also presented to clarify the

phenomena in the controlled flow. [DOI: 10.1063/1.1827276]
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Turbulence control techniques for drag reduction and heat transfer augmentation are of great

importance from the viewpoint of energy saving and environmental impact mitigation. Among

various methodologies, active feedback control schemes attract much attention because of their

potential of large control effect with small power input [1–3]. The pioneering studies [4–6] have

shown through their direct numerical simulation (DNS) of turbulent channel flow that the skin

friction drag can be substantially reduced by a small amount of local blowing/suction on the wall.

However, the Reynolds numbers assumed in most previous studies are Reτ � 100�180 (here-

after, Reτ denotes the friction Reynolds number defined based on the wall friction velocity uτ,

the channel half-width δ, and the kinematic viscosity ν), where significant low-Reynolds-number

effects must exist. Actually, Iwamoto et al. [7] showed in their DNS at Reτ � 642 that the perfor-

mance of the suboptimal control [5] is gradually deteriorated as the Reynolds number is increased.

The Reynolds numbers in real applications are far beyond the values of current DNS. For example,

the friction Reynolds number of a Boeing 747 aircraft is roughly estimated to be Reτ � 105 under

a typical cruising condition. For flows of such high Reynolds numbers, where highly complex

turbulent structures exist with a very wide range of turbulent spectra, no quantitative knowledge is

available on the effectiveness of active feedback control.

According to the analytical relation between the Reynolds shear stress distribution and the skin

friction coefficient [8], the amount of drag reduction depends on the degree of Reynolds stress

suppression not only in the near-wall layer, but also away from the wall. As the Reynolds number

increases, the contribution of the region away from the wall becomes dominant [7]. On the other

hand, the basic strategy of the active feedback control using sensors and actuators distributed

on the wall is to selectively manipulate the turbulence regeneration mechanism and suppress the

turbulence intensity in the near-wall layer. Therefore, it is not straightforward to expect that the

active feedback control scheme tested at low Reynolds numbers should also be effective at much

higher Reynolds numbers.

In the present study, we theoretically investigate the Reynolds number effect on the drag re-

duction rate achieved by an active feedback control acting only on the near-wall layer. We assume

ideally that all velocity fluctuations in the near-wall layer, i.e., 0 � y � yd , are perfectly damped

by the active feedback control, and derive a formula of the relationship between the Reynolds

number, the thickness of the damping layer yd , and the drag reduction rate.

We assume a fully developed turbulent channel flow of a constant flow rate. The friction co-

efficient in the uncontrolled flow is defined as Cf � τw�
�
�1�2�ρU2

m

�
, where τw is the wall shear
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stress, ρ is the density, and Um is the bulk mean velocity. The drag reduction rate is defined

as RD � �Cf �C�

f ��Cf , where the single prime denotes quantities of the controlled flow. Under

the constant flow rate condition, the wall shear stress τ�w, and the wall friction velocity u�τ of the

controlled flow are given by

τ�w � �1�RD�τw , u�τ �
�

1�RD uτ . (1)

Because the velocity fluctuations are assumed to be perfectly suppressed in the damped layer, no

Reynolds shear stress arises while the total shear stress is equal to the viscous shear stress in the

region of 0� y� yd . Thus, the shear stress τ�d and the friction velocity u�τd at the upper boundary

of the damped layer (y � yd) are given by

τ�d � �1�
yd

δ
�τ�w , u�τd �

��
1�

yd

δ

�
u�τ , (2)

where δ is the channel half-width, and the subscript of d denotes quantities at y � yd .

Figure 1 shows the mean velocity profiles of the uncontrolled and controlled flows. The mean

velocity profile in the damped layer is that of a laminar flow with the wall shear stress τ�w. Any

velocity fluctuations are absent at y � yd and y � 2δ� yd . Therefore, when viewed from the

frame moving at the mean velocity at y � yd , i.e., U �U �

d , the flow in the undamped layer (i.e.,

yd � y � 2δ� yd) is identical to an ordinary (i.e., uncontrolled) turbulent channel flow with the

channel width of 2�δ� yd�, the effective bulk mean velocity of U �

m eff, and the “wall” shear stress

of τ�d . Since the flow rate is kept constant, the bulk mean velocity Um is expressed by

Um �
1
δ

� yd

0
Udy�U �

d � �1�
yd

δ
��U �

m eff � �1�
yd

δ
� . (3)

Three terms on the right-hand side (RHS) represent, in the order of appearance, contributions from

the damped layer, the inertial part with the velocity of U �

d , and the turbulent flow in a reduced-size

channel with an effective bulk mean velocity of U �

m eff, respectively.

In the following, we transform each term in Eq. (3) as a function of uτ. The laminar velocity

profile in the damped layer is given by

U �
τ�w
µ

y
�

1�
y
2δ

�
, (4)

where µ denotes the viscosity. Integration of Eq. (4) gives the first term on the RHS of Eq. (3) as

1
δ

� yd

0
Udy�

1
2

�yd

δ

�2�
1�

yd

3δ

�
�1�RD�Reτ �uτ , (5)
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where Eq. (1) is used to substitute τ�w.

The mean velocity U �

d at y � yd is given by Eq. (4) as

U �

d �
τ�w
µ

yd

�
1�

yd

2δ

�
. (6)

Thus, the second term on the RHS of Eq. (3) can be expressed, by using Eqs. (1) and (6), as

U �

d ��1�
yd

δ
� �

yd

δ

�
1�

yd

2δ

��
1�

yd

δ

�
�1�RD�Reτ �uτ . (7)

Dean’s formula [9] derived from the logarithmic law is adopted to describe the relationship

between the bulk mean velocity Um and the wall friction velocity uτ, i.e.,

Um �

�
1
κ

lnReτ�F

�
uτ , κ � 0�41 , F � 3�2 . (8)

Substitution of Eqs. (2) and (8) (which stands for the narrowed channel flow with U �

m eff) into the

third term on the RHS of Eq. (3) results in

U �

m eff ��1�
yd

δ
� �

�
1�

yd

δ

� 3
2
�1�RD�

1
2 ��

1
κ

ln

	�
1�

yd

δ

� 3
2
�1�RD�

1
2 Reτ



�F

�
�uτ . (9)

Finally, by collecting these expressions, i.e., Eqs. (5) and (7)-(9), we obtain the following

identity equation:

1
κ

ln Reτ�F �
yd

δ

�
1�

yd

δ
�

1
3

yd
2

δ2

�
�1�RD�Reτ�

�
1�

yd

δ

� 3
2
�1�RD�

1
2 ��

1
κ

ln

	�
1�

yd

δ

� 3
2
�1�RD�

1
2 Reτ



�F

�
, (10)

with the Reynolds number of the uncontrolled flow Reτ, the thickness of damping layer divided

by channel half-width yd�δ, and the drag reduction rate RD. Thus, RD can be calculated for

given Reτ and yd�δ. The accuracy of Eq. (10) at a sufficiently wide Reynolds number range

(103 � Reτ � 5 � 105) is verified by the good agreement between the sole empirical formula used

in the derivation above, i.e., Eq. (8), and the experimental data [9, 10].

Figure 2(a) shows the dependency of RD on Reτ for constant values of y�d . Hereafter, all vari-

ables with the superscript of � are those nondimensionalized by the wall friction velocity of the
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uncontrolled flow uτ, and the kinematic viscosity ν. As Reτ increases, RD decreases. The Reynolds

number dependency of RD, however, is found to be weak. For y�d � 10, for instance, the drag re-

duction rate RD is about 0.43 (i.e., 43% drag reduction) at Reτ � 103, and about 35% even at

Reτ � 105. The damping layer at Reτ � 105 is extremely thin as compared to the channel half

width, i.e., yd�δ � 10�4.

Figure 2(b) shows the Reynolds number dependency of y�d required to achieve a specified

drag reduction rate RD. As Reτ increases, y�d gradually increases. Equation (10) reduces for

high Reynolds numbers, where yd�δ � 1 holds, to y�d � lnReτ. Namely, the Reynolds number

dependency is very weak. This asymptotic relation is in good agreement with Eq. (10) for Reτ �

4�103, as shown in Fig. 2(b). Thus, large drag reduction can be obtained even at high Reynolds

numbers only by damping the near-wall velocity fluctuations.

It is worth noting that an equation similar to Eq. (10) can be obtained by using another Dean’s

formula derived from the power law. This gives slight quantitative difference in the resulting RD

(RD = 30% at Reτ � 105 and y�d � 10) and y�d (y�d = 16 at Reτ � 105 and RD = 40%), but the trend

is essentially similar to Fig. 2.

The mechanism of drag reduction is examined in detail by DNS of turbulent channel flow at a

moderate Reynolds number [7]. The Navier-Stokes equation is solved under a constant flow rate

at a Reynolds number of Reτ � 642, i.e.,

∂u�i
�

∂t�
�u�j

∂u��i
∂x�j

��
∂p��

∂x�i
�

∂2u��i
∂x�j ∂x�j

�
1

φ�
f �y��u��i , (11)

where the third term on the RHS is the damping term and f �y� is defined as

f �0� y� � y�d � � 1 � f �y� � y�d � � 0 . (12)

It is assumed that numerous remote sensors acquire the velocity information in the near-wall thin

layer and that based on the sensor signals local body force is imposed to diminish any velocity

fluctuation in that region. The thickness of damping layer is changed as y�d � 30 and 60. We

employ the damping time constant of φ� � 1 to mimic strong damping force near both the walls.

Hereafter, u, v, and w denote the velocity components in the streamwise (x), wall-normal (y), and

spanwise (z) directions, respectively. Figure 3 shows contours of the instantaneous streamwise

velocity fluctuation u� in a cross-stream plane. Velocity fluctuations in the damped layer are almost

zero as shown in Figs. 3 (b) and 3 (c). The effective Reynolds number in the undamped region,

defined by Re�τ eff � u�τd�δ�yd��ν, is decreased with increasing the thickness of damping layer, so
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that the fine-scale turbulent structures with y�d � 60 are more suppressed than those with y�d � 30.

The drag reduction rates are RD � 60 and 74% for y�d � 30 and 60, respectively, which are in

good agreement with the analytical values of 66 and 78% given by Eq. (10), respectively. Note

that the small quantitative difference of RD between the theory and the DNS results is attributed to

the degree (or perfectness) of damping in the region of 0� y� yd . As shown below, the velocity

fluctuations slightly remain in the DNS, whereas those are assumed zero in the theoretical analysis.

Figure 4 shows the root-mean-square velocity fluctuations and the Reynolds shear stress with

and without velocity fluctuation damping at y� � 60. These quantities are drastically decreased in

the damping layer and also in the undamped region. This change in the Reynolds shear stress gives

a clue on the large drag reduction mechanism if we use the decomposition of the skin friction drag

proposed by Fukagata et al. [8], which reads

τ�w �
3
2

Reb

Re2
τ
�

1
δ

� δ

0
3
�

1�
y
δ

�
��u��v��� dy (13)

in the wall unit of the uncontrolled flow. The first term on the RHS is the contribution of

the laminar flow, while the second term is that of the turbulence, which is a weighted inte-

gral of the Reynolds shear stress distribution. In Fig. 4(b), the weighted Reynolds shear stress

3�1� y�δ���u��v��� is also shown. As is noticed from Eq. (13), the difference in the areas sur-

rounded by these two (uncontrolled and damped) curves of the weighted Reynolds stress directly

corresponds to the drag reduction rate, i.e., RD � S�0� y�δ� 1� � 0�74, where S� � � denotes the

area. The area S�0 � y� � 60� in the damping layer is 0.18, and that in the undamped region is

S�y� � 60� � 0�56. Namely, the drag reduction rate directly caused by the decrease of ��u��v���

in the near-wall damping layer is 18%, while the drag reduction rate due to the accompanied de-

crease of ��u��v��� in the undamped region is 56%. At higher Reynolds numbers, the relative

thickness of the damping layer yd�δ becomes smaller so that the contribution outside the damped

layer should be dominant. Thus, large drag reduction by the wall control at high Reynolds numbers

is mainly attributed to the decrease of the Reynolds stress in the region away from the wall.

Note that the near-wall-layer laminarization does not provide the maximum drag reduction. As

is noticed from Eq. (13), we can get a drag reduction larger than that of relaminarization if the

Reynolds shear stress (�u�v�) becomes negative. Whether such a sublaminar drag can be achieved

or not is still an open question (see, e.g., Bewley and Aamo [11]).

In summary, we derived a formula to describe the relationship between the Reynolds number

and the drag reduction rate in turbulent channel flows, i.e., Eq. (10), by assuming ideal damping
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of the velocity fluctuations in the near-wall layer. The derived formula as well as the following

analysis by DNS indicates that large drag reduction can be attained even at high Reynolds numbers

by damping the turbulence only near the wall, viz., without any direct manipulation of large-

scale structures away from the wall. Therefore, the basic strategy behind the existing control

schemes, i.e., attenuation of the near-wall turbulence, is also valid at high Reynolds numbers in

real applications.
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List of Figures

1 Schematic mean velocity profiles. (a) Uncontrolled; (b) with damping in the near-wall

layer.

2 (a) Dependency of the drag reduction rate RD on the Reynolds number Reτ with specified

thicknesses of damping layer y�d . (b) Thickness of the damping layer y�d required to

achieve specified drag reduction rates RD.

3 Cross-sectional view of instantaneous velocity field at Reτ � 642. (a) Uncontrolled; (b)

with damping at y� � 30; (c) with damping at y� � 60. Contours of the streamwise

velocity fluctuation (white to black, u�� ��1 to u�� � 1).

4 (a) RMS velocity fluctuations. (b) Raw and weighted Reynolds shear stresses. Both are

nondimensionalized by the friction velocity of the uncontrolled flow uτ.
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FIG. 1: Schematic mean velocity profiles. (a) Uncontrolled; (b) with damping in the near-wall layer.
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FIG. 2: (a) Dependency of the drag reduction rate RD on the Reynolds number Reτ with specified thicknesses

of damping layer y�d . (b) Thickness of the damping layer y�d required to achieve specified drag reduction

rates RD.
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FIG. 3: Cross-sectional view of instantaneous velocity field at Reτ � 642. (a) Uncontrolled; (b) with damp-
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��1 to u��

� 1).

12



(a)

3.0

2.5

2.0

1.5

1.0

0.5

0.0

u i+
 r

m
s

1.00.80.60.40.20.0

y / δ

 w/o damping
 w/   damping

 
 urms

 vrms

 wrms

(b)

2.5

2.0

1.5

1.0

0.5

0.0-u
'+

v'
+

,  
 3

(1
-y

/δ
 )

 (
-u

'+
v'

+ )

1.00.80.60.40.20.0

y / δ

 Raw Reynolds stress, w/o damping
 Raw Reynolds stress, w/   damping

 Weighted Reynolds stress,
 w/o damping
 Weighted Reynolds stress,
 w/   damping

FIG. 4: (a) RMS velocity fluctuations without and with damping velocity fluctuations at y� � 60. (b)

Raw and weighted Reynolds shear stresses. Both are nondimensionalized by the friction velocity of the

uncontrolled flow uτ.
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