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Abstract — A theoretical model for predicting the damping of the normal velocity fluctuation close to a
contaminated air-water interface is proposed. In the present model, the flow field close to a contaminated
interface is approximated by superposition of a free-surface flow at a clean interface and a surfactant-
induced flow. It is shown that the present model can predict the normal velocity fluctuation quite well
under a wide range of the Marangoni number representing a degree of surface contamination. Finally,
the predicted interface-normal velocity fluctuation is used to evaluate the interfacial mass transfer.

1. Introduction
Turbulent mass transfer across an air-water interface plays critical roles in geophysical and
industrial processes. In general, except for highly soluble or reactive gases, the most mass
transfer resistance exists on the water side. Furthermore, since the Schmidt number of a solute
becomes extremely high (Sc ∼ O(103)) in water, a thin concentration boundary layer is formed
beneath the interface (Jähne and Hauβecker, 1998). Thus, it is important to understand and
even control the microscopic transport mechanism in this concentration boundary layer.

In natural waters, surfactants are commonly present due to machine lubricants, excretion
and degradation products of phytoplankton and so forth (Frew, 1997). Generally, the presence
of surfactants creates non-uniform surface tension, by which eddying motion approaching the
interface is impeded. As a result, the free-surface turbulence and associated interfacial mass
transfer are significantly retarded. The closed-loop nature between the surfactant distribution,
surface tension and free-surface turbulence makes the process quite complicated.

Recently, Hasegawa and Kasagi (2008) conducted a series of numerical simulations for high
Schmidt number turbulent mass transfer across clean and contaminated free surfaces as well
as a solid surface. They observed that, with increasing the Marangoni number representing a
degree of surface contamination, the mass transfer rate drastically decreases, and consequently
converges to the value at a solid surface. As a result, the Schmidt number dependency of mass
transfer rate K switches from K ∝ Sc−0.5 to Sc−0.7. This indicates that a highly contaminated
interface is dynamically equivalent to a solid surface in terms of the interfacial mass transfer.

In the present study, we will develop a unified model of turbulent mass transfer, which is
applicable to dynamically different interfaces, i.e., clean, contaminated and solid surfaces. Our
final goal is to predict substantial decrease in the mass transfer rate due to the surface contami-
nation, and also the transition of the mass transfer mode from free to solid surfaces.
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Figure 1: Computational domain and coordinate system

2. Numerical Methods and Conditions
2.1. Velocity field
We consider a counter current air-water flow driven by constant pressure gradient as shown Fig.
1. Throughout this manuscript, x, y, and z represent the streamwise, spanwise and interface-
normal directions. The governing equations of the velocity field are the incompressible Navier-
Stokes and the continuity equations:

∂ui

∂t
+

∂(ujui)

∂xj

= − ∂p

∂xi

+
1

Reτ
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∂xj∂xj

, (1)

∂ui
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= 0. (2)

All variables are normalized by the depth δ∗ and the friction velocity u∗
τ in each phase. A

value with an asterisk represents a dimensional quantity. The Reynolds number based on u∗
τ and

δ∗ in each phase is Reτa = Reτw = 150, which corresponds to an air-water flow at a wind speed
of 2 m/s at y∗

a = δ∗ = 4 cm under a standard condition. The subscripts of a and w represent
values in air and water, respectively. The computational periods are 2.5πδ∗ and πδ∗ in the x
and z directions, respectively. We confirmed that the extension of the computational domain
does not affect the velocity and concentration statistics discussed here. A free-slip condition is
imposed at the outer boundaries, i.e., ya = yw = 1.0, in both phases.

A pseudo-spectral method is applied for spatial discretization. 64 x 64 Fourier modes and 128
Chebyshev polynomials are used in the horizontal and normal directions, respectively. Com-
putation with doubled modes in each direction was conducted to ensure that the present grid
system is fine enough to resolve all essential scales of the velocity field. For time integration,
the second-order Adams-Bashforth scheme is adopted for the advection terms, while the Crank-
Nicolson scheme for the viscous terms.

2.2. Concentration field
The transport equation of the solute concentration c is given by:

∂c

∂t
+

∂(ujc)

∂xj

=
1

ScReτ

∂2c

∂xj∂xj

, (3)

where the concentration c is normalized by the concentration difference ∆C∗ between the in-
terface and the bottom boundary in the water phase. Since most mass transfer resistance exists
on the water side, we solve the concentration field only in the water phase under a constant con-
centration conditions, i.e., c = 1.0 and 0 at the interface and the bottom boundary, respectively.
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The Schmidt number Sc = ν∗/D∗ is defined by the kinematic viscosity ν∗ and the molecular
diffusivity D∗ of a solute. In the present study, Sc is changed as 1.0 and 100. In the case of
Sc = 1.0, the same numerical scheme and grid system as those for the velocity field are used.

In order to calculate the high Schmidt number concentration field at Sc = 100, we em-
ploy a hybrid DNS/LES scheme, which applies direct numerical simulation (DNS) with high-
resolution grids within the near-interface region, while large-eddy simulation (LES) with coarser
grids in the outer layer as shown in Fig. 1b). Details of the numerical scheme can be found in
Hasegawa and Kasagi (2009).

2.3. Interfacial dynamical condition
Since we focus on the effects of interfacial dynamical condition on the mass transfer, the inter-
face is assumed to be flat for simplicity, i.e., vw = va = 0. The resultant interfacial boundary
conditions for the velocity field are the continuity of velocity components and the balance of
the shear stress and the surface tension in the tangential directions. They are written in dimen-
sionless forms as:

uwj =

√
ρ∗

w

ρ∗
a

uaj, (4)
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where j = 1 or 3. The surface tension σ is normalized by the equilibrium surface tension
σ∗

0 . The Weber number is defined by We = τ ∗δ∗/σ∗
0 , where τ ∗ = ρ∗

wu∗
τw

2 = ρ∗
au

∗
τa

2 is the
interfacial shear stress. For simplicity, we assume the following linear relationship between the
surface tension σ and the surfactant concentration γ:

σ − 1 = Ma(1 − γ). (6)

Here, γ is normalized by the equilibrium concentration γ∗
0 . The Marangoni number is defined

by Ma = −(γ∗
0/σ

∗
0)(dσ∗/dγ∗)γ=1. By substituting Eq. (6), the interfacial boundary condition

(5) results in:
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In the present study, We is kept constant as We = 9.0 · 10−4, while Ma is systematically
changed as Ma = 0 (Clean), 1.0 · 10−3 (Case 1), 1.0 · 10−2 (Case 2) and 1.0 · 10−1 (Case 3).
Note that Ma = 0 corresponds to a clean interface.

The transport equation of an insoluble surfactant concentration γ in the two-dimensional
interface gives rise to:
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)
. (8)

Note that the total amount of the surfactant on the interface is always conserved. The Schmidt
number of the surfactant is Scγ = 1.0 in all cases.

The whole computation proceeds as follows. The Navier-Stokes and continuity equations (1)
and (2) in the air and water phases are solved by a pseudo-spectral method under the coupled
interfacial conditions (4) and (7). Similarly, the transport equation (3) of a solute concentration
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Figure 2: Velocity fluctuations near the interface in the water phase

c is solved in the water phase. The obtained velocity field at the interface is used for solving
the surfactant transport equation (8). The resultant surfactant concentration γ is assigned to the
interfacial boundary condition (7) in the next step.

3. Results
3.1. Velocity field
Since the interface is dynamically similar to a solid surface for the air flow due to large density
ratio between water and air, and the most mass transfer resistance exists on the water side, we
focus on the surfactant effects on the flow statistics on the water side.

The velocity fluctuations near the interface are shown in Fig. 2. It is found that the streamwise
and spanwise velocity fluctuations are kept almost unchanged, while only the normal velocity
fluctuation is damped drastically with increasing the Marangoni number. This indicates that the
velocity field near a highly contaminated interface is essentially different from that near a solid
surface. As will be discussed in the following subsection, the drastic damping of the normal
velocity fluctuation is a primary reason for the change of mass transfer mode at a contaminated
interface. Other fundamental statistics of the velocity field were reported in Hasegawa and
Kasagi (2008).

3.2. Concentration field
The mass transfer rate K+ in the water phase is defined by:

K+ =
Q∗

u∗
τw(C∗

I − C∗
B)

=
1

∆C+
B

. (9)

Here, C∗
I and C∗

B are the mean concentration at the interface and the bulk, respectively, while
∆C∗

B = C∗
I −C∗

B. The mass transfer rates at Sc = 1.0 and 100 in all cases are plotted in Fig. 3.
With increasing the Marangoni number, K+ is drastically decreased, and eventually converges
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Figure 3: Mass transfer rates as a function of the Schmidt number

to the value at a solid surface. Surface contamination has a profound effect at the high Schmidt
number, since the most resistance to mass transfer lies in a thinner layer beneath the interface.

Jähne et al. (1987) compiled experimental data and showed that K is correlated as K+ =
0.11Sc−0.5 and 0.073Sc−0.7 for clean and highly contaminated interfaces, respectively. The
present numerical results agree well with the experimental data. It should be noted that the
change of the Schmidt number dependency of K is also well reproduced. This suggests that the
mass transfer mode switches to that near a solid surface at highly contaminated interfaces, i.e.,
Cases 2 and 3.

In the following section, we will develop a mass transfer model with particular attention to
the damping of the normal velocity fluctuation at a contaminated interface.

4. Mass Transfer Model
4.1. Modeling of concentration boundary layer
Considering the concentration boundary layer becomes extremely thin at high Schmidt num-
bers, the concentration filed near a free or solid surface can be well approximated by the fol-
lowing one-dimensional advection-diffusion equation:

∂c+

∂t+
+ v+ ∂c+

∂y+
=

1

Sc

∂2c+

∂y+2 (10)

The interface-normal velocity v can be represented by Taylor series as v(y, t) = −β(t)y and
v(y, t) = η(t)y2 near free and solid surfaces, respectively. Here, β is the surface divergence
and defined as β = −(∂v/∂y)y=0 = (∂u/∂x + ∂w/∂z)y=0. Hasegawa and Kasagi (2008)
showed that, for a clean or slightly contaminated interface, the mass transfer rate K can be well
correlated by the following equation:

K+ = K∗/u∗
τw = 0.4

√
β+

rms

Sc
(11)

A theoretical support for this model is extensively discussed in Hasegawa and Kasagi (2009).
With increasing the surface contamination, however, β rapidly decreases, and eventually the
quadratic term in y becomes dominant. In this case, K is no longer related to β and converges
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to the value at a solid surface. These results indicate that the normal velocity fluctuation close
to a contaminated interface is a key for predicting the mass transfer.

4.2. Modeling of viscous sublayer
According to Fig. 2, the damping of velocity fluctuations due to surface contamination mainly
occurs inside the viscous sublayer. Hence, we assume that the surface contamination influences
the flow field through viscosity, and the non-linear interaction between the surfactant-driven
flow and the outer flow is negligible. As a result, the flow field near a contaminated interface
can be modeled as superposition of an original flow near a clean surface and a surfactant-
driven viscous flow. Hereafter, the surface divergence at a clean surface is denoted by β0, while
the surface divergence induced by the surfactant is βs. Thus, the surface divergence βc at a
contaminated interface is given by βc = β0 + βs. By applying a two-dimensional divergence
operator ∇H = (∂/∂x, ∂/∂z) to the linearized Navier-Stokes equation, the following equation
for βs is obtained:

∂βs

∂t
=

1

Reτ

∇2βs, (12)

where the boundary conditions for βs are deduced from Eq. (7) as:

∂βs

∂y
+

MaRetau

We
∇2

Hγ = 0 at y = 0,

βs = 0 as y → ∞. (13)

Here, ∇2
H = ∂2/∂x2 + ∂2/∂z2. By analytically solving Eq. (12) under the boundary con-

ditions (13), the following damping factor Df , which represents the ratio between the surface
divergences at clean and contaminated interfaces is obtained:
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where

A = iωReτ , B = i
MaReτ

We

(k2
x + k2

z)

ω
. (15)

Here, a tilde represents operation of Fourier transform in time t and horizontal directions x
and z. The wave numbers in the x and z directions and frequency are denoted by kx, kz and
ω, respectively. Since the present model is linear, the surface divergence βc at a contaminated
interface can be obtained by simply multiplying the surface divergence β0 at a clean interface
with the damping factor of Eq. (14) for individual wave numers kx, kz and frequency ω.

4.3. Model verification
The interface-normal velocity fluctuations at clean, contaminated and solid surfaces obtained
by DNS and the present model are compared in Fig. 4. The model predictions show good
agreement with the DNS data. Especially, the change from linear to quadratic limiting behavior
is reproduced well.

Once the normal velocity fluctuation close to a contaminated interface is obtained, the inter-
facial mass transfer rate can be calculated by Eq. (11). The mass transfer rate as a function of
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the root mean square of the surface divergence fluctuation is plotted in Fig. 5. For clean and
slightly contaminated interfaces (Clean and Case 1), the mass transfer rate shows good agree-
ment with Eq. (11). For highly contaminated interfaces (Cases 2 and 3), the surface divergence
becomes vanishingly small. Consequently, the mass transfer rate converges to a lower limit,
i.e., the value at a solid surface. The present results indicate that the mass transfer rate and the
transition of the mass transfer mode from free to solid surfaces are well predicted by using the
intensity of the surface divergence fluctuation.

5. Conclusions
A linear model for predicting the interface-normal velocity fluctuation near a contaminated in-
terface was developed. The damping factor depends on the spatial wave numbers and frequency
of the surface divergence fluctuation as well as the Marangoni number representing a degree
of surface contamination. Although the present model is a simple linear model, good agree-
ment between the model prediction and the DNS data was confirmed for a wide range of the
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Marangoni number. By combining the present model with the surface divergence model (11),
it becomes possible to predict the mass transfer rate at a contaminated interface, and also the
transition of the mass transfer mode from free to solid surfaces.
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