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Abstract

Direct numerical simulation (DNS) of the channel flow with an anisotropic com-
pliant surface is performed in order to investigate its drag reduction effect in a fully
developed turbulent flow. The computational domain is set to be 3δ× 2δ × 3δ,
where δ is the channel half-width. The surface is passively driven by the pressure
and wall-shear stress fluctuations, and the surface velocity provides a boundary
condition for the fluid velocity field. An evolutionary optimization method (CMA-
ES) is used to optimize the parameters of the anisotropic compliant surface. The
optimization identifies several sets of parameters that result in a reduction of the
friction drag with a maximum reduction rate of 8%. The primary mechanism for
drag reduction is attributed to the decrease of the Reynolds shear stress (RSS) near
the wall induced by the kinematics of the surface. The resultant wall motion is
a uniform wave traveling downstream. The compliant wall, with the parameters
found in the optimization study, is also tested in a computational domain that is
doubled in the streamwise direction. The drag, however, is found to increase in the
larger computational domain due to excessively large wall-normal velocity fluctu-
ations of the wall.

Keywords: Turbulence control, Drag reduction, Compliant surface, Direct numeri-
cal simulation, Evolutionary optimization
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1 Introduction

Compliant surfaces have attracted considerable attention as potential passive mechanisms to
reduce turbulent friction drag. For laminar-turbulent transition, several theoretical and experi-
mental studies have been reported (see Gad-el-Hak [1] and references therein), and it is now be-
lieved that such surfaces can suppress flow instabilities and delay transition. For fully-developed
wall-bounded turbulent flow, however, drag reduction effect by compliant surfaces has been in
question for long time.

Recently, several direct numerical simulation (DNS) studies have tried to clarify whether
and how the friction drag is reduced by compliant surfaces. Endo and Himeno [2] performed
DNS of turbulent channel flow with a simplified isotropic compliant surface as shown in Fig. 1b,
which models Kramer’s coating (Fig. 1a), and reported a 2.7% drag reduction. This result was
soon disproved by a similar DNS by Xu et al. [3], in which no clear drag reduction effect was
obtained. The major difference between Endo and Himeno [2] and Xu et al. [3] is the integration
time for sampling data; t+0 = 0−1000 in the former and t+0 = 500−3000 in the latter (where
the superscript “+0” denotes the wall unit in the case of solid channel). Xu et al. [3] concluded
that the drag reduction observed by Endo and Himeno [2] was merely a transitional one. More
importantly, their analysis clearly shows that the pressure fluctuation and the wall deformation
cannot be in-phase, although these should become in-phase in order to reduce the drag. This
analysis implies that one may need a driving force other than the pressure fluctuations in order
to have a surface motion that reduces the friction drag.

In the present study, we perform DNS of channel flow with a compliant surface. In contrast
to the previous DNS studies, we consider an anisotropic compliant surface model as shown in
Fig. 1d, which was introduced by Carpenter and Morris [4] to represent Grosskreutz’s compliant
wall (Fig. 1c). This anisotropic surface has, at least, two distinct features when compared to the
isotropic one:

1. The surface is driven not only by the wall pressure, but also by the wall-shear stress
fluctuations;

2. Due to the constraint of rigid arms, as shown in Figs. 1d and 2, the wall moves so as to
weaken the RSS, −u′v′.

The latter difference is directly related to the reduction of friction drag because of the identity
between the RSS and the skin friction coefficient, Cf , [5, 6] i.e.,

Cf =
12
Reb

+24
Z 1

0
(1− y) (−u′v′) dy (1)

This is the identity equation for channel flows and all the variables are made dimensionless
by using the channel half width, δ, and twice the bulk mean velocity, 2Ub. Note that Reb =
2Ubδ/ν is the Reynolds number, and y denotes the distance from the wall. Equation (1) indicates
that the skin friction coefficient is decomposed into two parts: one is the laminar contribution
given by the well-known laminar solution, and the other is the turbulent contribution, which is
proportional to the weighted integral of the RSS. The weighting factor (1− y) indicates that
the RSS near the wall is more responsible for the friction drag than that in the central region.
Therefore, the most straightforward strategy for friction drag reduction is to reduce the RSS in
the region near the wall. In fact, this strategy has been verified in the closed-loop control by
Fukagata and Kasagi [7] as well as in the open-loop control by Min et al. [8].
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(a) Kramer’s coating (b) Isotropic compliant wall model

(c) Grosskreutz’s anisotropic
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Figure 1: Schematics of compliant walls and their models (Redrawn based on Gad-el-Hak
(2002)).

Although the above-mentioned motion of the anisotropic compliant wall always produces
negative RSS on the wall, the RSS in the near-wall layer is determined as a solution of the
Navier-Stokes equation. Namely, it is not known a priori whether the friction drag (or, equiva-
lently, the second term of Eq. (1)) can be reduced by using an anisotropic compliant wall.

2 Anisotropic compliant wall model

2.1 Equation of motion

Figure 2 shows again the anisotropic compliant wall model considered in the present study. The
movement of the arm is restricted in x− y plane parallel to the mean flow direction. Assuming
a small change in the arm angle, δθ, from the equilibrium angle, θ, the governing equation for
the surface can be written for a single variable, η f (x,z, t), as [4]

η f = lδθ , (2)

where l is the arm length. The displacement (x′w, y′w, z′w) and the velocity (u′w, v′w, w′
w) of the

membrane are given by

x′w = η f sinθ , y′w = η f cosθ , z′w = 0 , (3)

and

u′w =
∂η f

∂t
sinθ , v′w =

∂η f

∂t
cosθ , w′

w = 0 , (4)
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Figure 2: Parameters of the anisotropic compliant wall model.

respectively. From Eq. (4), the local Reynolds shear stress on the wall due to this surface motion
is calculated as

−u′wv′w = −sin(2θ)
2

(
∂η f

∂t

)2

, (5)

which is always negative when 0 < θ < π/2.
The governing equation of motion for η f has been modified from the original [4] so as to

allow two-dimensional deformation. Being expressed in wall units, this equation reads

b+ρ+
m

∂2η+
f

∂t+2 +D+ ∂+η+
f

∂t+
+B+ cos2 θ∇+4η+

f

−E+b+ sin2 θ∇+2η+
f +K+

E η+
f = f + ,

(6)

where
f + = (−p′+w +σ′+

w )cosθ+ τ′+w sinθ (7)

and ∇2 = ∂2/∂x2 +∂2/∂z2. The wall units variants of the membrane parameters are defined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ρ+
m =

ρm

ρ
, b+ =

buτ
ν

D+ =
D

ρuτ
,

E+ =
E

ρu2
τ

, K+
E =

KEν
ρu3

τ
.

(8)

where b, ρm, E, and KE are the thickness, the density, the elastic modulus of the membrane, and
the spring stiffness, respectively. The flexural rigidity of the membrane, B, in this case is given
by

B =
Eb3

12(1−ν2
p)

, (9)
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where νp is the Poisson ratio. A damper designed by the parameter D is added to the spring.
The driving forces are fluctuations in the pressure p′w, the normal stress, σ′

w, and the shear stress,
τ′w.

2.2 Monoharmonic analysis

Two-dimensional Fourier transform of the membrane equation of motion results in the equation
of motion for the standard spring-mass-damper system, i.e.,

∂2η̂ f

∂t2 +2ζωn
∂η̂ f

∂t
+ω2

nη̂ f =
f̂

bρm
, (10)

where the hat (·̂) denotes the Fourier coefficient,

ωn =

√
KE +Bk4 cos2 θ+Ebk2 sin2 θ

bρm
(11)

is the natural angular frequency of the wavenumber mode k (with k =
√

k2
x + k2

z ) and

ζ =
D

2bρmωn
(12)

is the damping coefficient. From the classical control theory, the gain (|Ĝ(iω)|) and phase delay
(� Ĝ(iω)) of the velocity (∂η̂ f /∂t) in response to the force ( f̂ ) can be found as

|Ĝ(iω)| =

(
ω
ωn

)

bρm

√√√√[
1−

(
ω
ωn

)2
]2

+
(

2ζ
ω
ωn

)2
(13)

and

� Ĝ(iω) = tan−1

⎡
⎢⎢⎢⎣

1−
(

ω
ωn

)2

2ζ
ω
ωn

⎤
⎥⎥⎥⎦ , (14)

respectively. The form of these equations is exactly the same as that of the isotropic compliant
surface [3]. We note, however, that the relationship between the oscillation frequency and the
wavenumber (Eq. (11)) and the composition of the driving force (Eq. (7)) are different.

3 Numerical procedure

3.1 Direct numerical simulation

We consider an incompressible turbulent channel flow. The fluid velocity field is simulated by
using the second-order finite difference code, which was originally developed for pipe flows [9]
and later adapted to channel flows [10]. The Navier-Stokes equation is discretized by using the
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energy conservative second-order accurate finite difference method [11, 12].Time integration
is done by using the low storage third-order Runge-Kutta/Crank-Nicolson (RK3/CN) scheme
(see, e.g., [13]) together with the delta-form fractional step method [14]. The Poisson equation
is solved by using the fast Fourier transform in the streamwise (x) and spanwise (z) directions
and the tridiagonal matrix solver in the wall-normal (y) direction.

The flow rate is kept constant. The bulk Reynolds number, Reb, is 3300, which corresponds
to a friction Reynolds number of about 110 (Reτ = 112.46) in the case of rigid walls. The
computational domain is 3δ×2δ×3δ and the number of cells is 32×64×64 in the streamwise
(x), the wall-normal (y), and the spanwise (z) directions, respectively. This domain size is
similar to that used in the previous study of isotropic compliant surfaces by Xu et al. [3].

The membrane equation of motion, Eq. (6), is spatially discretized by the second-order
accurate finite difference method on the same mesh as that for the wall boundary of the fluid
velocity field. The time integration is done by RK3/CN method with the same time stepping
as that for the fluid. The membrane is driven by the pressure and wall-shear fluctuations as
described by Eqs. (6) and (7), whereas the velocity of the membrane computed at every instant
is used as the boundary condition of the fluid velocity field at the wall, i.e., Eq. (4). In order
to enable an optimization study, deformation of the membrane is neglected. This simplification
is justified when the wall displacement is relatively small (say, less than about 5 wall unit).
Note that Kang and Choi [15] from their DNS of feedback-controlled channel flow reported
that, when the wall displacement is less than 5 wall unit, the most of the drag reduction is
due to the velocity induced by the wall motion rather than the wall displacement. Miwa [16]
studied by means of DNS the velocity induced by a wall deformation and a blowing/suction at
the same velocity. He also reports that the effect of displacement is negligibly small when the
displacement is on the order of 1 wall unit. These observations are also reasonable from the
well-known fact that the wall with roughness of which grain size is less than 5 wall unit can be
considered as a hydrodynamically smooth wall.

The computational time step is chosen so that both the CFL number for the fluid and that
for the membrane (determined by the wavespeed, c = ωn/k) are less than 0.5.

The computation is started from the velocity field of a solid channel flow and integrated
for t+0 = 0−12000. The statistics presented below are accumulated during the time period of
t+0 = 6000−12000, which is about twice as long as that used by Xu et al. [3].

3.2 Evolutionary optimization

The monoharmonic analysis of the compliant wall model gives us an estimate of the wavelike
behavior of the wall, but cannot predict the highly nonlinear interaction of the wall with the
turbulent flow. In order to systematically assess the proposed compliant surface design, an
inverse design procedure, employing an evolutionary optimization algorithm, is used to find
optimal parameters for the model.

The inverse design problem is formulated as an optimization problem. Our objective is to
minimize the friction drag coefficient Cf , which is a function of wall parameters α =(b,ρm,E,KE ,θ,D),
under the restriction of wall-deformation amplitude. Therefore, the loss function (which is also
called as the cost function) L can be defined here as

L(α) = Cf (α)+ cηH
(

η+0
f ,rms(α)−5

)
·
(

η+0
f ,rms(α)−5

)2
. (15)
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The first term in Eq. (15) is the friction drag that we want to minimize. The second term is a
penalty term, where cη is the constant scaling factor and H(·) is the Heaviside function. This
penalty term takes a very large value when the simulation results in the root-mean-square (RMS)
of η+0

f larger than 5 (i.e., large deformation), so that it works to avoid solutions contradicting
the aforementioned assumption.

The turbulent channel flow coupled with the compliant walls is a highly dynamical system
that is susceptible to small changes in design parameters requiring a optimization algorithm
that is robust in the presence of uncertainties and possibly multiple optima. In addition, the
algorithm should be highly efficient since the evaluation of L(α) using DNS is computationally
intensive even with the velocity coupling only.

We implement an Evolution Strategy with Adaptation of the Covariance Matrix (CMA-
ES) [17–19]. The competitive performance and robustness of CMA-ES have been demonstrated
in a number of benchmark optimization problems [20] and applications. Based on a preliminary
parameter study, we choose a logarithmic encoding for all parameters except θ. The search
domain is set to be: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ+0
m = 1.0×10α1, α1 ∈ [−1,1],

E+0 = 6.3×10α2, α2 ∈ [−1,1],
K+0

E = 8.2×10α3, α3 ∈ [−5,−2],
θ = 30×α4 deg., α4 ∈ [1,3],

D+0 = 3.0×10α5, α5 ∈ [−3,−1].

(16)

The thickness b+0 is kept constant at b+0 = 1.1.
Similarly to other evolution strategies, such as the genetic algorithm, a set of parameters is

treated as an individual. The individuals evolve (i.e., the parameters are modified) according to
the prescribed rule so as to minimize the loss function L. The population size λ (i.e., number of
individuals per generation) is chosen based on empirical estimates on the order of 2n, where n
is the number of parameters. By using a larger population, we can compensate for multimodal
cost functions at the expense of larger numbers of evaluations. Moreover, when the population
size is set equal to the number of available processors, the advantage of using CMA-ES can
fully be exploited. For the present study, 32 processors were available for parallel function
evaluations. Therefore, we chose λ = 32 which is 4 times the default population size for a five
dimensional problem [18]. For more details of the CMA-ES algorithms, the readers are referred
to Refs. [17–20].

The evaluation of the populations is performed in parallel. The uncertainty in the evaluation
of Cf (α) is reduced by actually performing two evaluations starting from different initial con-
ditions. In addition, the twofold evaluation allows for a simple yet efficient load balancing by
pairing cases with small and large time-steps on the individual CPUs.

4 Results and discussion

4.1 Optimization results

The CMA-ES was initialized with sets of parameters distributed over the initial search domain,
i.e., Eq. (16). The available computation time permitted about 1000 evaluation trials (to be
exact, 992 evaluations) of the loss function, L(α), each one involving two simulations with
different initial turbulent fields (viz., about 2000 DNS runs were made in total). As Figs. 3 and
4 imply, the results of the optimization procedure using CMA-ES are ambivalent: while some
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Table 1: The parameters of two best cases (Case A1 and Case A2) and a case of drag increase
(Case B) (in wall units of solid channel) and the resultant drag reduction rate (RD) and RMS
wall displacement (y+0

w,rms).

Case A1 A2 B
ρ+0

m 1.23×100 1.34×100 7.42×10−1

b+0 1.1 1.1 1.1
E+0 2.61×100 4.03×100 1.12×100

K+0
E 3.25×10−4 3.75×10−4 8.62×10−5

θ [deg.] 62.7 62.7 63.9
D+0 6.49×10−4 2.12×10−3 1.29×10−3

RD [%] 8.32 7.00 −10.7
y+0

w,rms 3.67 3.14 6.10

very promising solutions are found, the algorithm does not show clear signs of converging to an
optimal solution within the given number of function evaluations.

Table 1 summarizes three cases. A case consists of a parameter set and the resulting func-
tion value. The table shows the two best cases obtained in the present optimization (Case A1
and Case A2) and a case of drag increase (Case B). While not far from each other, the actual
parameter figures for the two best cases confirm that the algorithm has not converged yet. This
also hints at the multimodality of the underlying physics.

The table also shows the resultant drag reduction rate, RD, i.e.,

RD =
Cf 0 −Cf

Cf 0
(17)

(where Cf 0 denotes Cf of the solid channel) and the computed root-mean-square (RMS) wall
displacement (y+0

rms). Drag reduction is attained in Cases A1 and A2, and amounts to 7−8%. The
time trace of the normalized skin friction coefficient in Fig. 5 also confirms the drag reduction in
these two cases, although the fluctuation is relatively large due to the intermittency of very low
Reynolds number flow and the small computational domain used. An interesting observation
in Table 1 is that the equilibrium arm angle (θ) of the best two cases is about 60◦, since the
optimization has been made in the range of 30◦ < θ < 90◦. This angle makes the wall structure
quite sensitive to the wall shear stress and suggests that this quantity drives motions that play
an important role for drag reduction, as anticipated in our comparison with isotropic compliant
wall.

The natural angular frequency, ωn (see, Eq. (11)), and the damping factor, ζ (Eq. (12)),
of the cases above are shown in Fig. 6 as functions of the two-dimensional wavenumber, k.
These surfaces have much lower frequency than the typical frequency of near-wall turbulence.
The damping coefficient is much smaller than unity, and this fact means that the surface is
under-damped. From these viewpoints, Case B (which results in drag increase) has similar
characteristics to those of Cases A1 and A2. The major difference is that Case B has slightly
softer membrane and spring, which result in larger wall displacement, y+0

rms.
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the typical scale of near-wall turbulence.
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4.2 Turbulence statistics

Figure 7 shows the mean velocity, U +0, for the three cases in Table 1. The slight increase/decrease
of U+0 observed around y+0 � 1 simply reflects the drag increase/decrease due to the surface
motion, because it is made dimensionless by using the friction velocity of the solid channel. An
interesting observation is that the mean velocity around y+0 � 10 is slighty reduced as com-
pared to the case of solid wall, both in the drag reducing cases (Cases A1 and A2) and in the
drag increasing case (Case B). The reason for this is explained later.

The Reynolds shear stress (RSS) is shown in Fig. 8. In all cases, the RSS takes a negative
value on the wall. This is actually enforced by the design of the surface; its motion is restricted
by the rigid arm (Fig. 2). In accordance with the identity equation (1), the RSS is significantly
reduced in Cases A1 and A2, except for the region of 2 < y+0 < 7. In Case B, in contrast, the
RSS is increased only slightly far from the wall but significantly increased near the wall, so that
the drag increases. Note that only the turbulent structure in the region near the wall is modified
directly by the wall motion. Similarly to the case of blowing and suction from the wall, the
changes in the region far from the wall are regarded as indirect effects [21], especially due to
the change of mean pressure gradient.

The changes in the RSS profile are mathematically connected to the changes in the mean
velocity profile (Fig. 7) via (see, Eq. (2.4) of Ref. [22]):

U(y) = Reb

⎡
⎢⎢⎣Cf

8

(
y− y2

2

)
︸ ︷︷ ︸

I

−
Z y

0
(−u′v′)dy︸ ︷︷ ︸

II

⎤
⎥⎥⎦ . (18)

For instance, the decrease of U+0 around y+0 � 10 observed in Fig. 7 can be explained as
follows. In the decreasing cases (Cases A1 and A2), term I decreases by 7-8 %, while term II
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is nearly unchanged as can be noticed from Fig. 8(b). In Case B, term I increases by 11 %, but
term II increases more.

The RMS velocity components are shown in Fig. 9. In the drag reducing case (Case A1),
the wall-normal component (vrms) is nearly unchanged, whilst the streamwise component (urms)
is reduced near the wall. This reduction of urms directly leads to the reduction of the RSS. In the
drag increasing case (Case B), urms is also reduced. From this observation, the common effect
of the present anisotropic compliant wall seems to be the reduction of the streamwise RMS
velocity and the enhancement of the wall-normal RMS velocity. The reduction of the RSS (and
the friction drag) seems to occur only when the vrms induced by the wall-motion is not too large.

4.3 Motion of anisotropic compliant surface

Figure 10 shows the wall motion of the drag reducing case (Case A1). The surface deforms in
a wavelike manner, which travels in the downstream direction. The wavelength about 330 wall
unit (i.e., the same length as the computational domain) and the wavespeed is observed to be
c+0 � 4. In terms of the bulk velocity, this corresponds to c/Ub � 0.3. The RSS on the wall is
made largely negative in front of and behind the hill where the wall-velocity is large (see, Eq.
(5)). The quasi-streamwise vortices observed on the solid wall (Fig. 10(a)) are less populated
on the compliant wall (Figs. 10(b)-(f)), and instead, spanwise vortical structures are found to be
increased. Such spanwise vortices have been observed also in other drag reducing flows under
feedback control [23, 24]. Although its generation mechanism and its role in drag reduction
are not fully clear, it is conjectured that they work as “rollers” between the wall and the bulk
flow [23].

In Koumoutsakos [23], traveling waves of blowing and suction have been reported as the re-
sult of a feedback vorticity flux control leading to large drag reductions. Recently, Min et al. [8]
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Figure 10: Wall motion (magnified by 5 times in y direction), Reynolds shear stress (color on
the wall), and vortical structure (white, Q+ = 0.02) in the drag-reducing case (Case A1). (a)
solid wall; (b)-(f) time sequence of compliant wall (time interval is about 7 wall unit time).
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(a) (b)

(c) (d)

Figure 11: Time sequence of wall motion (magnified by 5 times in y direction), Reynolds shear
stress (color on the wall), and vortical structure (white, Q+ = 0.02) in the drag-increasing case
(Case B). Time interval is about 7 wall unit time.

recovered the traveling-wave-like blowing and suction in DNS and demonstrated that this type
of motion can generate a negative RSS near the wall and thus reduce the drag. We wish to em-
phasize at this point that our study achieves a similar motion with a passive device. Our optimal
designs are somewhat in contradiction with those of Min et al. [8]. For blowing and suction
control, the linear analysis of Min et al. [8] shows that downstream propagating waves always
lead to a drag increase. Our results indicate the contrary for the present anisotropic compliant
surface. The difference originates from the existence of streamwise velocity component on the
wall. While the negative RSS is caused by the phase difference between u′ and v′ in the case of
Min et al. [8], the RSS on the wall is always made negative by the present anisotropic surface,
as was illustrated in Fig. 2 and Eq. (5), and as was verified in Fig. 8.

Figure 11 depicts the wall motion and turbulent structure in the drag increasing case (Case
B). The wall motion is essentially similar to the drag reducing case, i.e., downward traveling-
wave with the wavelength about 330 wall unit, but with a larger amplitude of deformation as
shown in Table 1. The wavespeed is found to be c+0 � 6. The pattern of RSS on the wall
is similar to that of the drag reducing case. The number of streamwise vortices, however, is
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Figure 12: Wall motion (no magnification in y direction), Reynolds shear stress (color on the
wall), and vortical structure (white, Q+ = 0.02) in the doubled computational domain (Case
A1).

observed to be drastically increased as compared to the case without control. The increase of
streamwise vortices is qualitatively consistent with the increase of vrms, wrms, and RSS observed
above.

4.4 Simulation in a larger computational domain

We performed simulations of Cases A1 and A2 in a computational domain doubled in the
streamwise direction, i.e., 6δ× 2δ× 3δ. The drag was not reduced, but doubled in both cases
(i.e., RD ∼−200 %). As shown in Fig. 12, the surface deforms like a downward traveling wave
similarly to the cases in the original computational domain, but the wavelength is about 660
wall unit (i.e., again, the same length as the computational domain) and the amplitude of de-
formation is about four times larger than the original case. The wavespeed is also found to be
larger (c+0 � 7). Although the RSS is made negative on the wall, it is drastically increased in
the rest of the channel as shown in Fig. 13. The wall-normal velocity fluctuation on the wall
and the wall displacement are found to be v+0

rms = 0.45 and y+0
rms = 6.5, respectively (Case A1).

Similarly to the argument made for Case B in Section 4.2, too large wall-normal velocity seems
to have caused the increase of drag.

The present method and the findings discussed in the previous sections are limited, at the
moment, to a small domain and small wall-deformation amplitudes. We find that applying
optimal parameters obtained in a small domain to larger domains is not suitable and, in fact, it
may lead to drag increase rather than drag reduction. This drag increase can be attributed to
longer wavelength structures developing in the larger domains. We note that this observation
is similar to the recent findings [25] indicating that the optimal controllers for 2D bluff body
flows are not necessarily optimal for the respective 3D flows. Moreover, the unexpected result
obtained in the larger domain may also be related to the validity of assumption made on the
wall deformation. These arguments imply that the optimization performed herein will need to
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Figure 13: Reynolds shear stress in the case of doubled computational domain.

be repeated in larger domains and with a different method to handle wall deformation. This
approach requires significantly more computational resources and it is a subject of ongoing
investigation.

5 Conclusions

We performed DNS of turbulent channel flow at Reτ0 � 110 with an anisotropic compliant sur-
face. Unlike the isotropic compliant surface used in the previous DNS studies, the anisotropic
compliant surface is driven by the streamwise wall-shear stress as well as by the wall pressure.
Under the assumption of small deformation, the velocity of the compliant surface was fed back
to the fluid velocity field as the wall boundary condition, while the effect of displacement was
neglected.

For the optimization study, the computational domain was set to be 3δ × 2δ × 3δ in the
streamwise, wall-normal, and spanwise directions, where δ is the channel half-width. The
CMA-ES was used to optimize five parameters and we obtain several sets of parameters that
lead to reduction of the friction drag. The maximum drag reduction rate attained in the present
optimization attempt is about 8%. The equilibrium arm angle of the drag reducing cases is found
to be about 60◦. This angle implies that the wall-shear stress, rather than the wall pressure, is an
important driving force for the surface motion. Both in the drag reducing and drag increasing
cases, the resultant surface motion is found to be a traveling wave traveling downstream. The
Reynolds shear stress on the wall is found to become negative due to the motion of surfaces
restricted by the inclined arms. We also observe a much reduced streamwise RMS velocity
component near the wall. The difference between the drag reducing and increasing cases is
found in the wall-normal RMS velocity component: it is kept at a level comparable to the one
in the solid channel in the drag reducing case, while it is significantly increased in the drag
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increasing case.
Simulation was performed also in a computational domain doubled in the streamwise direc-

tion, i.e., 6δ×2δ×3δ, using the two optimal sets of parameters obtained in the smaller domain.
The drag is found to increase in both cases. The reason for this drag increase is attributed to the
development of longer waves and the excessively large wall-normal velocity induced thereby.

The limitation of the present method is the necessity to use a small computational domain
as well as to assume small deformation of the surface, which was necessary in order to perform
a huge number of DNS runs for the evolutionary optimization. While the present study demon-
strates that the drag reduction by anisotropic compliant surfaces can be achieved by performing
the optimization of parameters, it also indicates that simply applying the optimal parameters
obtained in the small domain to larger domains fails to reduce the drag.
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[20] Kern, S., Müller, S. D., Hansen, N., Büche, D., Ocenasek, J. and Koumoutsakos, P., 2004,
Learning probability distributions in continuous evolutionary algorithms - a comparative
review. Natural Computing, 3, 77-112.

[21] Fukagata, K. and Kasagi, N., 2003, Drag reduction in turbulent pipe flow with feedback
control applied partially to wall. International Journal of Heat and Fluid Flow, 24, 480-
490.

[22] Kasagi, N. and Fukagata, K., 2006, The FIK identity and its implication for turbulent skin
friction control. Transition and Turbulence Control, edited by M. Gad-el-Hak and H. M.
Tsai (World Scientific, Singapore), 297-324.

[23] Koumoutsakos, P., 1999, Vorticity flux control in a turbulent channel flow,” Physics of
Fluids, 11, 248-250.

19



[24] Fukagata, K., Kasagi, N., and Sugiyama, K., 2005, Feedback control achieving sublaminar
friction drag. Proceedings of the 6th Symposium on Smart Control of Turbulence, Tokyo,
March 6-9, 2005, pp. 143-148.

[25] Poncet, Ph., Hildebrand, R., Cottet, G. H., and Koumoutsakos, P., 2008. Spatially dis-
tributed control for optimal drag reduction of the flow past a circular cylinder. Journal of
Fluid Mechanics, 599, 111-120.

20


