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ABSTRACT

An attempt is made for simultaneous, but independent con-

trol of skin friction reduction and heat transfer enhancement

in a turbulent channel flow. First, a mathematical relation is

derived of the contribution of turbulent heat flux to the Nus-

selt number. Two different thermal boundary conditions are

considered: (1) isothermal condition, where two walls are kept

at constant, but different temperatures; (2) isoflux condition,

where both walls are heated at a given wall heat flux. By

utilizing the difference between the derived relation and the

similar relation for the skin friction (Fukagata et al., 2002),

a strategy for the simultaneous control is proposed. The ef-

fects of the control strategy are examined by means of direct

numerical simulation.

INTRODUCTION

Active feedback control is expected to play a significant

role in reducing the skin friction drag in wall-bounded tur-

bulent flows and has been widely studied both theoretically

(see, e.g., Kasagi (1998) and Kim (2003), for review) and ex-

perimentally (Rathnasingham and Breuer (2003); Suzuki et

al. (2005)). With this control technique, heat transfer char-

acteristics of turbulent flows can also be drastically modified.

In many industrial applications, such as heat exchangers and

piping systems, it is desirable to keep the skin friction drag

reasonably small. As for the heat transfer, either enhance-

ment or suppression is preferred depending on the function of

equipment.

One of the important focal points in the previous DNS stud-

ies on the turbulent heat transfer was the similarity between

momentum and heat transport. According to these studies,

the degree of similarity when the Prandtl number is around

unity (Pr ∼ 1) seems to strongly depend on the wall bound-

ary condition for the thermal field. A strong similarity exists

when the heat is uniformly generated in the channel (Kim and

Moin, 1989) and when the isoflux condition is applied on the

walls (Kasagi et al., 1992; Tiselj et al., 2001). When two walls

are kept at constant, but different temperatures, the similarity

is strong in the regions near the wall, but weaker in the core

region of channel (Lyons et al., 1991; Seki et al., 2003).

Due to the above-mentioned similarity between momentum

and heat transport, simultaneous reduction of skin friction and
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heat transfer is straightforward. For simultaneous achieve-

ment of skin friction reduction and heat transfer enhancement,

however, no control strategy has been established. An at-

tempt of such a dissimilar control was once made by Yokoo et

al., (2000) for a turbulent channel flow with isothermal walls

kept at different temperatures. They set a cost function in-

cluding both the skin friction and wall heat flux and used the

optimal control procedure to determine the control input, i.e.,

blowing/suction from the wall, so that the cost function is

minimized. Despite the huge computational cost required for

the optimization, the effect of control was very small. In the

best case, they attained 0.006% heat transfer augmentation

with 0.002% drag reduction.

In the present study, a similar attempt is made from a dif-

ferent point of view. First, a mathematical relationship is

derived of the contribution of turbulent heat flux to the Nus-

selt number. By utilizing the difference between the derived

relation and the corresponding relationship for the skin fric-

tion (Fukagata et al., 2002), a strategy for the simultaneous

control is proposed. A control scheme is then developed based

on the proposed strategy and its effects if examined by DNS.
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CONTRIBUTION OF TURBULENT HEAT FLUX TO NUS-

SELT NUMBER

First, an explicit mathematical relation is derived of lam-

inar and turbulent contributions to the Nusselt number in a

fully developed turbulent channel flow.

The transport equation of the temperature, T ∗, can be

written as

∂T ∗

∂t
= −∂(ujT

∗)

∂xj
+

1

RebPr

∂2T ∗

∂x2
j

. (1)

Throughout the paper, the subscript of ∗ denotes dimensional

variables. The length, velocity, and time in Eq. (1) are nondi-

mensionalized by the channel half-width, δ∗ and twice the bulk

mean velocity, 2U∗
b .

The bulk Reynolds number and the Prandtl number are

defined, respectively, by

Reb =
2U∗

b δ∗

ν∗
(2)

and

Pr =
ν∗

α∗ , (3)

where α∗ is the thermal diffusivity, which is assumed to be

constant.
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Two different thermal boundary conditions are considered:

1. constant, but different temperatures on two walls

(isothermal wall condition);

2. constant heat flux on two walls (isoflux wall condition).

In both cases, temperature fluctuation is assumed to be zero

on the walls. In the first case, one wall is heated and the other

is cooled, so that they are kept at given (different) tempera-

tures. The problem is to obtain the wall heat flux under the

given temperature difference. In the second case, both walls

are heated by a given wall heat flux. The temperature dif-

ference is determined as a result of turbulent heat transport.

Due to this difference in the problem setting, the quantity

used for the nondimensionalization should also be different in

each case. Therefore, the derivation process for each case is

separately presented below.

Isothermal condition

We consider a fully developed channel flow, as shown in

Fig. 1(a). The two channel walls are kept at constant tem-

peratures, T ∗|y=0 and T ∗|y=2. The temperature difference,

∆T ∗, is defined as

∆T ∗ = T ∗|y=1 − T ∗|y=0 = T ∗|y=2 − T ∗|y=1 . (4)

By using this given temperature difference, a dimensionless

temperature, ϑ, is defined as

ϑ =
T ∗ − T ∗|y=1

∆T ∗ . (5)

The transport equation for the dimensionless mean tempera-

ture reads

0 = −dv′ϑ′

dy
+

1

RebPr

d2ϑ

dy2
. (6)

Here, the overbar denotes the average in homogeneous (i.e.,

the streamwise and spanwise) directions and in time. The

prime denotes the fluctuation components. The boundary

conditions are

ϑ|y=0 = −1 , ϑ|y=2 = 1 . (7)

Note that the dimensionless bulk-mean temperature is zero,

because the mean velocity profile is symmetric and the mean

temperature profile is anti-symmetric around the center plane.

The Nusselt number is defined as

Nu =
D∗

h

∆T ∗
q∗w
λ∗ =

4δ∗

∆T ∗
dT

∗

dy∗

∣∣∣∣
w

= 4
dϑ

dy

∣∣∣∣
w

, (8)

where λ∗ is the heat conduction coefficient, D∗
h is the hydraulic

diameter, and the subscript of w denotes the quantity on the

wall. It should be stressed that the amount of wall heat flux,

q∗w, is determined as a result of turbulent heat transport. Due

to the anti-symmetry of the mean temperature profile, the

mean heat flux is the same on the both walls, i.e.,

Nu = 4
dϑ

dy

∣∣∣∣
y=0

= 4
dϑ

dy

∣∣∣∣
y=2

. (9)

By integrating Eq. (6) once from 0 to y, we obtain

Nu

4RebPr
= −v′ϑ′ +

1

RebPr

dϑ

dy
, (10)

x, u

y, v

z, w y = 0

y = 2

Mean flow

Figure 1: Flow geometry.

where v′ϑ′|y=0 = 0 and Eq. (9) were used. This integration

is equivalent to obtain the flux balance. Equation (10) is in-

tegrated again from 0 to 1 to read

Nu

4RebPr
=

∫ 1

0

(−v′ϑ′)dy +
1

RebPr
. (11)

Here, the boundary condition, i.e., ϑ|y=0 = −1 and the anti-

symmetry condition, i.e., ϑ|y=1 = 0, were used. Hence,

Nu = 4 + 4RebPr

∫ 1

0

(−v′ϑ′)dy . (12)

Note that, due to anti-symmetry of the mean temperature, the

same relation can be obtained when the integration is started

from y to 2.

The derived relation, Eq. (12), suggests that the Nusselt

number can be decomposed into two parts. The first term in

the right hand side is the laminar contribution, which is iden-

tical to heat conduction, and the second term is the turbulent

contribution. The turbulent contribution is a simple integra-

tion of turbulent heat flux, (−v′ϑ′), This is clearly different

from the turbulent contribution to the skin friction coefficient,

which is given by a weighted integration of the Reynolds shear

stress (Fukagata et al., 2002), i.e.,

Cf =
12

Reb
+ 12

∫ 2

0

(1 − y)(−u′v′) dy . (13)

Isoflux condition

In this case, the constant wall heat flux, q∗w, is the given

condition. Therefore, we introduce another dimensionless

temperature, θ (which is different from ϑ above), i.e.,

θ =
T ∗

w − T ∗

∆T ∗
x

, (14)

where T ∗
w(x) is the wall temperature, which linearly varies

along the streamwise direction. From the global heat balance,

the reference temperature of ∆T ∗
x is found to be the change

of T ∗
w (and also the bulk mean temperatures, T ∗

b ) over the

streamwise distance of δ∗/2, i.e.,

∆T ∗
x =

δ∗

2

dT ∗
w

dx∗ =
δ∗

2

dT ∗
b

dx∗ =
q∗w

ρ∗c∗p(2U∗
b )

. (15)

By using this nondimensionalization, the transport equa-

tion for the dimensionless mean temperature reads

0 = −dv′θ′

dy
+

1

RebPr

d2θ

dy2
+ 2u . (16)
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The last term in Eq. (16) corresponds to the source term,

u(dT ∗
w/dx) (Kasagi et al., 1992). The boundary conditions

are

θ|y=0 = 0 , θ|y=2 = 0 . (17)

Integration of Eq. (16) from y = 0 to y = 1 gives the global

heat balance, i.e.,

0 = − 1

RebPr

dθ

dy

∣∣∣∣
w

+ 1 . (18)

Note that the mean temperature is symmetric with respect to

the center plane. Therefore, the Nusselt number is expressed

as

Nu =
D∗

h

∆T ∗
q∗w
λ∗ =

−4 dT∗
dy

∣∣
w

T ∗
w − T ∗

b

=
4

Θb

dθ

dy

∣∣∣∣
w

=
4RebPr

Θb
, (19)

where Θb = (T ∗
w − T ∗

b )/∆T ∗
x is the dimensionless bulk mean

temperature.

Under the present thermal boundary conditions, the deriva-

tion of the relationship between Nu and −v′θ′ is exactly the

same as that for the skin friction (Fukagata et al., 2002).

Namely, we apply triple integration, i.e.,
∫ 1

0
udy

∫ y

0
dy

∫ y

0
dy,

to Eq. (16). The first integration essentially gives the flux bal-

ance. The second leads to the mean temperature profile. The

third is akin to obtaining the bulk mean temperature from the

temperature profile. By transforming multiple integrations to

single integrations by applying the integration by parts, it re-

sults in

1

Nu
=

1

4
− 1

4

∫ 1

0

(1 −φ)(−v′θ′)dy− 1

4

∫ 1

0

φ(2 −φ)dy , (20)

where φ(y) is defined as

φ(y) = 2

∫ y

0

u(η)dη , (21)

and referred to here as the fractional flow rate. Unlike that

for the skin friction, i.e., Eq. (13), or that in the isothermal

case, i.e., Eq. (12), the relationship appears as the inverse of

Nusselt number. This is due to the fact that the quantity

that determines the Nusselt number, i.e., the dimensionless

bulk mean velocity (Θb), has an inverse relation to Nu, as

can be noticed in Eq. (19). Moreover, this inverse relation

originates from the problem setting to obtain ∆T ∗ ∝ Nu−1

for a given q∗w ∝ Nu, which is on the contrary to the case of

Eq. (13), where the problem is to obtain τ∗
w ∝ Cf for a given

U∗
b ∝ C

−1/2
f

.

The derivation is not complete in the sense to decompose

into laminar and turbulent contributions, because the third

term (which originates from the source term in Eq. (16)) also

includes the contribution from the laminar flow. Therefore, we

decompose the mean temperature, u, into the laminar profile,

uL and the deviation from that, uT , i.e.,

u = uL + uT , (22)

where

uL(y) =
3y

4
(2 − y) . (23)

0
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0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

W
ei

gh
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1−y

1−φ  (Reτ=110)

1−φ  (Reτ=650)

Figure 2: Weighting functions in the turbulent contribution

term, (1−y) for the skin friction and (1−φ) for the heat trans-

fer in the isoflux case. The values of φ at different Reynolds

numbers are computed using the DNS data by Iwamoto et al.

(2002).

The deviation part, uT , can be calculated by using Eq. (13)

as

uT (y) = Reb

[
3y

4
(2 − y)

∫ 1

0

2(1 − η)(−u′v′)dη

−
∫ y

0

(−u′v′)dη

]
.

(24)

Similarly, the fractional flow rate, φ, is decomposed into

φ = φL + φT , (25)

where

φL(y) = 2

∫ y

0

uL(η)dη =
y2

2
(3 − y) , (26)

and

φT (y) = 2

∫ y

0

uT (η)dη . (27)

By using this decomposition, the rest of the laminar contribu-

tion can be extracted from the last term in Eq. (20), i.e.,

−1

4

∫ 1

0

φ(2 − φ)dy = − 9

70
− 1

4

∫ 1

0

[(y3 − 3y2 + 2)φT

− φ2
T ]dy .

(28)

Thus, the relationship for the Nusselt number can finally be

expressed as

1

Nu
=

17

140
− 1

4

∫ 1

0

(1 − φ)(−v′θ′)dy

−1

4

∫ 1

0

[(y3 − 3y2 + 2)φT − φ2
T ]dy .

(29)

The first term in Eq. (29) corresponds to the heat trans-

fer in a laminar channel flow with isoflux walls, i.e., Nu =
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Figure 3: Time trace of Cf in the isothermal case.

140/17 � 8.235, which is a well-known value (see, e.g., Kays

and Crawford, 1993). The second term represents the con-

tribution from the turbulent heat flux. This term is usually

positive in a turbulent channel flow, which results in reduction

of 1/Nu (i.e., increase of Nu) as compared to that of laminar

flow. The last contribution is determined solely by the veloc-

ity profile due to the presence of the Reynolds shear stress, as

can be noticed from Eq. (24).

CONTROL STRATEGY

Based on the derived relations, control strategies are pro-

posed for two different boundary conditions considered here.

In the case of isothermal walls with different temperature,

the difference in the weighting functions for the skin friction,

Eq. (13), and heat transfer, Eq. (12), i.e., (1 − y) and 1,

in the turbulent contribution term suggests that simultaneous

control of drag reduction and heat transfer augmentation may

be possible, if the turbulence is suppressed near the wall and

enhanced in the central region of the channel.

In the case of constant heat flux from both walls, the

derived relationship indicates the difficulty of simultaneous

achievement of friction drag reduction and heat transfer aug-

mentation. As shown in Fig. 2, the weighting function in the

turbulent contribution term for the heat transfer, i.e., 1 − φ,

has a distribution quite close to that of the turbulent contri-

bution term for the skin friction, i.e., 1 − y. The difference

in the weighting functions becomes smaller as the Reynolds

number increases, as is also shown in the figure. Despite this

implication, a possible control strategy may be to enhance the

turbulence a bit far from the wall, say from y = 0.3 to 0.6.

The effect of control, however, may be much weaker than that

expected in the above-mentioned isothermal case.

Note that the third term in Eq. (29) has also non-negligible

contribution to the Nusselt number. Evaluation using the

available DNS database (http://www.thtlab.t.u-tokyo.ac.jp/),

however, suggests that it is considerably smaller than the tur-

bulent contribution term.

VERIFICATION OF THE PROPOSED STRATEGY

The proposed strategy is examined by means of DNS of

channel flow at Reb = 3220 (i.e., Reτ = 110 in uncontrolled

flow) and Pr = 0.71. The DNS code is based on the pseudo-

spectral method (Iwamoto et al, 2002) .

Figure 4: Time trace of Nu in the isothermal case.

Figure 5: Time trace of j/f factor in the isothermal case.

The opposition control scheme (Choi et al., 1994) is

adopted for the suppression of near-wall Reynolds stress. The

virtual detection plane is set at y+
d

= 10. In addition, a virtual

body force, i.e., −βf(y)θ′, is added to the wall-normal mo-

mentum equation for the enhancement of turbulent heat-flux

in the central region of the channel. Here, β is an amplitude

coefficient and f(y) is an envelope function.

First, the case of isothermal walls with different temper-

ature is examined. According to the strategy above, the

envelope function is set to have a value of unity in the central

region away from the wall and zero near the wall: f(y) = 1 for

0.5 < y < 1.5; f(y) = 0 for 0 < y < 0.5 and 1.5 < y < 2. The

amplitude coefficient is set at β = 7.4 (nondimensionalized by

using 2U∗
b

, δ∗ and ∆T ∗).

Figures 3 and 4 show the time traces of the skin friction co-

efficient (Cf) and the Nusselt number (Nu) in three cases: 1)

without control, 2) with opposition control, 3) with opposition

control and body force (referred to as present control). Both

Cf and Nu decrease just after the onset of present control.

The time traces of these closely follow those with opposition

control only (denoted as w/V-control). In the later time, both

Cf and Nu increase. This complicated behavior is attributed

to two different time scales in different regions: the short time

scale in the region near the wall, which corresponds to the di-

rect effect of opposition control (Fukagata and Kasagi, 2003);

and the long time scale in the region near the wall, which re-

flects the effect of forcing in the central region of the channel.

After the initial transience, Cf returns to the level of uncon-
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(a)

(b)

Figure 6: Turbulence statistics in the isothermal case. (a)

Reynolds shear stress; (b) turbulent heat flux.

trolled flow, and Nu further increase to about 1.5 times of

that of the uncontrolled flow. As the measure of heat trans-

fer performance, j/f factor (where j = Nu/(Reb Pr1/3) and

f = 4Cf) is shown in Fig. 5. The heat transfer performance

is improved by 50 % with the present control.

The profiles of Reynolds shear stress and turbulent heat

flux exhibit the changes that we expected, as shown in Fig. 6.

The Reynolds shear stress profile with the present control is

roughly similar to that in the uncontrolled case. This is con-

-0.2

-0.1

0.0

0.1

0.2

1.00.80.60.40.20.0

y / δ

( I )

( II )

( III )

 w/o control
 w/ V-control

        and body force

Figure 7: Fractional contribution to (1/Nu) in the isoflux case.

(I), laminar contribution, i.e., 17/140; (II), turbulent contri-

bution; (III), the third term in Eq. (29).

(a)
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 w/o control
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Figure 8: Turbulence statistics in the isoflux case. (a)

Reynolds shear stress; (b) turbulent heat flux.

sistent with the observation that Cf takes approximately the

same value as the that in the uncontrolled case. The turbu-

lent heat flux is suppressed near the wall (y/δ < 0.1), whereas

largely enhanced in the central region of the channel. This

change leads to significant increase in the Nusselt number, as

implied by Eq. (12).

Subsequently, the case of isoflux walls is examined. In this

case, the envelope function is set to have the value of f(y) = 1

for 0.3 < y < 0.6 and 1.4 < y < 1.7, where the weighting

functions for the Reynolds shear stress and turbulent heat flux

have relatively large differences (f (y) = 0 in the other region).

The amplitude coefficient is set at β = 0.0013 (nondimension-

alized by using 2U∗
b , δ∗ and ∆T ∗

x ). Note that we examined

several values of β larger than 0.0013. In those cases, however,

the computations became unstable due to the rapid increase

of skin friction, i.e., increase of turbulence level beyond the

grid resolution, and the flow fields did not reach quasi-steady

states.

The resultant skin friction coefficient and the Nusselt num-

ber are, respectively, 1.22 and 1.25 times larger than those of

the uncontrolled flow. The increase of corresponding j/f fac-

tor is about 2%. As was expected from Eq. (29) and Fig. 2,

the effect of control is very small.

Figure 7 shows the fractional contributions to the inverse of

Nusselt number (i.e., the integrand of each term in Eq. (29))

as functions of y. It is clearly illustrated that the modification

of turbulent heat flux around y/δ = 0.2 contributes to the

increase of Nusselt number. It is also confirmed that the third
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term in Eq. (29) less contributes to the Nusselt number.

The profiles of Reynolds shear stress and the turbulent heat

flux are shown in Fig. 8. Both of these quantities are largely

suppressed around y+ � 5, which corresponds to the location

of virtual wall (Hammond et al., 1998), due to the opposition

control. The turbulence is enhanced by the body force in the

region of 0.3 < y < 0.6. The amounts of increase in this region,

however, are not equal for the Reynolds shear stress and the

turbulent heat flux: the increase of the Reynolds shear stress

is much larger than that of the turbulent heat flux. These

dissimilar modifications make the control effect even smaller.

Another reason for the small control effect might be the

very low Reynolds number used in the simulation (Reτ = 110).

In the present case, the regions where the turbulence is sup-

pressed (0 < y+ < 10) and where it is enhanced (0.3 < y <

0.6, i.e., 33 < y+ < 66) are too close to each other. The

weighting functions in turbulent contribution terms are scaled

by δ (strictly speaking, the weighting function for the heat flux

has a weak dependence on the Reynolds number, too). There-

fore, there is a possibility for the present control to be more

effective at a higher Reynolds number, where the suppression

and enhancement regions become far apart. Verification of the

present control strategy at a higher Reynolds number, how-

ever, remains for a future study.

CONCLUSIONS

We derived analytical relationships between the Nusselt

number and the turbulent heat flux distribution for two dif-

ferent thermal boundary conditions.

In the case with isothermal walls kept at different temper-

atures, the Nusselt number can be clearly decomposed into

the laminar and turbulent contributions. The turbulent con-

tribution is proportional to an integration of the turbulent

heat flux. This relationship, together with the corresponding

relationship for the skin friction (Fukagata et al., 2002), sug-

gests that the near-wall turbulence should be suppressed and

far-wall turbulence should be enhanced in order to achieve si-

multaneous achievement of skin friction reduction and heat

transfer enhancement. Direct numerical simulation with the

opposition control and virtual forcing in the central region

confirms the above-mentioned strategy. The heat transfer was

increased about 1.5 times, while the friction was kept at the

same level.

In the case of isoflux wall condition, the inverse of Nus-

selt number can be decomposed into three terms. The first

two terms are the laminar and turbulent contributions. The

third term, which originates from the source term in the di-

mensionless heat transport equation, is a function solely of the

Reynolds shear stress. The weighting function for the turbu-

lent heat flux in the turbulent contribution term is practically

similar to that for the Reynolds shear stress in the relationship

for the skin friction. Therefore, above-mentioned simultaneous

control is more difficult in this case. Nevertheless, the di-

rect numerical simulation demonstrated augmentation of heat

transfer slightly larger than increase of drag, by using a control

scheme similar to that used for the isothermal case.
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