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Abstract - Numerical simulation of high Schmidt number turbulent mass transfer across

free and solid surfaces is carried out. Near a free surface, the concentration field quickly

responses to the normal velocity fluctuation and the eddy diffusivity is almost

unchanged even at high Schmidt numbers. In contrast, near a solid wall, the

concentration field becomes less sensitive to the normal velocity fluctuation and the

eddy diffusivity is drastically decreased with increasing the Schmidt number. This

fundamental difference between the concentration fields close to free and solid surfaces

can be attributed to the difference in the asymptotic behavior of velocity fluctuations

toward the interfaces. Namely, the normal velocity varies quadratically with the distance

from a solid surface, while linearly near a free surface. Strong damping of high-

frequency concentration fluctuations near a solid surface agrees well with the theoretical

analysis by Shaw and Hanratty (AIChE J. 23 (1977a) 160-169). As a result, lower-

frequency velocity fluctuations dominate the mass transfer at higher Schmidt numbers.

These results imply that the analogy between momentum and mass transfer, which has

been widely used in engineering applications, may not hold.
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Notation

Ai coefficient for the i-th order in Taylor expansion of eddy diffusivity Ed

ai coefficient for the i-th order in Taylor expansion of streamwise velocity

fluctuation u’

Bi coefficient for the i-th order in Taylor expansion of eddy diffusivity Ev

bi coefficient for the i-th order in Taylor expansion of surface-normal velocity

fluctuation v’

C mean concentration

CB bulk mean concentration

CI mean concentration at an interface

D molecular diffusivity

Ed eddy diffusivity

Ev eddy viscosity

K mass transfer rate

kB Batchelor wave number

kx, ky, kz number of modes in streamwise, surface-normal and spanwise directions

p pressure

Q mean mass flux at an interface

q local mass flux at an interface

R correlation coefficient between  and 

Re Reynolds number based on friction velocity u  and depth 

N number of grid points

si coefficient for the i-th order in Taylor expansion of concentration fluctuation

c’

Sc Schmidt number

Sct turbulent Schmidt number

t time

U mean streamwise velocity

u, v, w velocity components in the x, y, and z directions

u friction velocity

W frequency spectrum of fluctuating component 

Wcv frequency co-spectrum of c 'v '

x, y, z streamwise, surface-normal and spanwise directions
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yp peak location of concentration fluctuation

Greek

coefficient for the first order in Taylor expansion of normal velocity

fluctuation

coefficient for the second order in Taylor expansion of normal velocity

fluctuation

C difference between concentrations at an interface and a bottom boundary

CB difference between the interfacial and bulk concentrations

d thickness of the diffusive sublayer

t time step

x, y, z  grid spacings in streamwise, surface-normal and spanwise directions

depth of computational domain

c thickness of the concentration boundary layer

kinematic viscosity

fluid density

frequency

Superscript

( )
*

dimensional value

( )
 +

value non-dimensionalized by the shear unit

( )’ fluctuating component

( ) mean component

Subscript

( )a value in the air phase

( ) w value in the water phase
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1. Introduction

Heat and mass transfer across free and solid surfaces plays an important role

in a variety of engineering applications and also in many environmental problems.

When considering mass transfer inside liquid, the Schmidt number is commonly high

(Sc ~ O(103)) and the transport mechanism is governed by turbulent motions within a

thin concentration boundary layer in the immediate vicinity of a surface ( c ~ O(10-100

μm)).

In the previous study, Hasegawa and Kasagi (2005) investigated the

microscopic transport mechanisms across clean and contaminated air-water interfaces.

At the clean interface, the interfacial mass flux quickly responses to the normal velocity

fluctuation. With increasing the degree of surface contamination, however, high-

frequency concentration fluctuation components are strongly damped. Moreover, the

mass transfer rate drastically deteriorates and eventually falls down to the value on a

solid wall. Since the normal velocity fluctuation near a highly contaminated interface

converges to the data near a solid surface (Hasegawa and Kasagi, 2005), the

contaminated interface can be approximated by a solid surface in terms of the mass

transfer.

This fundamental difference between the concentration fields close to free and

solid surfaces was first discussed by McCready and Hanratty (1984). They argued that a

velocity component v in the surface-normal direction y plays a critical role in the

interfacial mass transfer. By expanding v in Taylor series as v t, y( ) = t( )y  and

v t, y( ) = t( )y2  at free and solid surfaces, respectively, they obtained the following

relationships for high frequencies. Namely, for a free surface,

Wq ( ) =
W ( )

2
Q2 , (1)

whereas, for a solid surface (Shaw and Hanratty, 1977a),

Wq ( ) =
4W ( )

Sc 3
Q2 . (2)

Here, Wq, W  and W  are the frequency spectra of the interfacial mass flux q and the

normal velocity fluctuations near free and solid surfaces, respectively. The above

equations imply the concentration fluctuation near a solid surface is damped faster than
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that near a free surface with increasing the frequency . Furthermore, the appearance of

Sc in the denominator of Eq. (2) reveals that the damping near a solid surface is more

enhanced at higher Schmidt numbers. Although high Schmidt number effects near free

and solid surfaces should be quite different, few studies have focused on this issue.

The damping effect on concentration fluctuations near a solid surface has a

strong impact on the limiting behavior of an eddy diffusivity Ed. Since the mean

concentration profile mostly changes inside the viscous sublayer at high Schmidt

numbers, Taylor series have been usually employed for representation of velocity and

concentration fields. Considering that both the eddy diffusivity Ed and the eddy

viscosity Ev vary as y3 near a solid surface, the analogy between momentum and mass

transfer has been well documented (e.g., Monin and Yaglom, 1971; Kader, 1981;

Churchill, 1997), i.e., Ed ~ A3y
3 , where the proportional constant A3 is assumed

independent of the Schmidt number.  This leads to a well-known relationship of

K +
= K / u Sc 2 /3 , where K is the mass transfer rate and u  is the friction velocity.

According to the precise experiments with an electrochemical technique

conducted by Shaw and Hanratty (1977b), however, K
+
 was proportional to Sc-0.7. They

also observed that the contribution of large wavenumbers to turbulent mass flux is

strongly damped with increasing the Schmidt number. This trend agrees with the

theoretical analysis given by Eq. (2).

Recently, numerical simulation of turbulent mass transfer across a solid

surface has also been carried out. Such simulations are quite useful in providing the

detailed statistics of velocity and concentration fields near a solid surface, which can not

be obtained in experiments. Papavassiliou and Hanratty (1997) applied a Lagrangian

method to turbulent mass transfer at up to Sc = 2400 and reported that Ed is represented

by Ed y3.38  rather than y3  inside the concentration boundary layer. Although the

Lagrangian approach is useful in obtaining mean concentration profiles, it is not

straightforward to obtain higher-order statistics.

Calmet and Magnaudet (1997) carried out large eddy-simulation (LES) of

high Schmidt number mass transfer in turbulent channel flow and showed that large-

scale structures govern the mass transfer. Direct numerical simulation (DNS) by Na and

Hanratty (2000) reported that the limiting value of Ed / y
3  at a solid wall decreases by

about 30 % with increasing the Schmidt number from 1.0 to 10. Recent high-resolution

DNS data by Seki et al. (2006) also support this trend. These results suggest the
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breakdown of analogy between momentum and mass transfer at high Schmidt numbers.

Therefore, there has been strong need to investigate the limiting behavior of the

concentration and velocity fields close to a solid surface. However, most existing DNS

databases are limited to low to moderate Schmidt numbers (Sc ~ O (10)).

In this work, we carry out numerical simulation of turbulent mass transfer at

Sc = 100 across two distinct boundaries, i.e., a clean air-water interface and a solid

surface. In order to calculate the concentration field at the high Schmidt number, we

apply a hybrid DNS/LES scheme, which employs DNS with high-resolution grids

within the concentration boundary layer, while large-eddy simulation (LES) with

coarser grids in the outer layer.

Our main objective is to clarify the effects of the velocity boundary condition

on high Schmidt number turbulent mass transfer inside the viscous sublayer.

Specifically, we examine high Schmidt number effects on the limiting behavior of the

eddy diffusivity and the damping of concentration fluctuations with the two kinds of

boundary conditions.

2. Computational Model and Numerical Method

2. 1 Numerical conditions

We consider two flow conditions as shown in Figs. 1 (a) and (b). The first

case is a fully developed counter-current air-water flow driven by a constant pressure

gradient as shown in Fig. 1 (a), where x, y and z are the streamwise, surface-normal and

spanwise directions, respectively. The computational periods are chosen to be 2.5
*

and 
*
 in the x and z directions, respectively, where 

*
 is the depth of the

computational domain. A value with an asterisk represents a dimensional value

throughout the present paper.

The governing equations are the incompressible Navier-Stokes, continuity,

and scalar transport equations given below:

ui
t
+ uj

ui
x j

=
p

xi
+
1

Re

2ui
x j x j

, (3)

ui
xi

= 0 , (4)
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c

t
+ uj

c

x j
=

1

Re Sc

2c

x j x j
, (5)

where, the velocity ui and the coordinate xi are non-dimensionalized by u
*
 and 

*
 in

each phase, where u
*
 is the interfacial friction velocity. The concentration c

*
 of a solute

is normalized by the concentration difference C
*
 between the free surface and the

bottom boundary in the water phase. The non-dimensional parameters which

characterize the velocity and concentration fields are the Reynolds number Re  =

u
* *

 /
*
 and the Schmidt number Sc = 

*
 /D

*
, where 

*
 and D

*
 are the kinematic

viscosity and the molecular diffusivity of a gaseous solute, respectively. The Reynolds

numbers based on u
*
 and 

*
 in the air and water phases are Re  w = Re  a = 150, which

approximately corresponds to an air-water flow with u a

*
 = 2.2 m/s and u w

*
 = 0.054 m/s

at two outer boundaries of 
*
 = 4 cm. The subscripts a and w represent values in the air

and water phases, respectively. The density ratio of water and air is w
*

 / a
*
 = 841.

Since we focus on the fundamental difference between slip and no-slip

boundary conditions at free and solid surfaces in terms of the mass transfer, interfacial

deformation is neglected to avoid additional complexity. Hence, the resultant velocity

boundary condition at the air-water interface is the continuity of horizontal velocity

components as well as the shear stress.

uiw =
w

a

uia  (i = 1 and 3) (6)

u2w = u2a = 0 (7)

1

Re
w

uiw
x2w

=
1

Re
a

uia
x2a

 (i = 1 and 3) (8)

Hereafter, we will focus on only the water phase and omit the subscript of w.

In the second case, the air-water interface is replaced by a no-slip boundary as

shown in Fig. 1 (b). Hence, the interfacial velocity boundary conditions are given as:

u1 = u2 = u3 = 0 (9)

In both cases, a free-slip condition is used at the bottom boundary. For the

concentration field, a constant concentration boundary condition c = 1 is imposed at the

interfaces, while c = 0 at the bottom. The Schmidt number Sc is set to be 1.0 and 100 in

each case.

Direct numerical simulation (DNS) is applied to the velocity and

concentration fields at Sc = 1.0 by using a pseudo-spectral method. 64 x 64 Fourier
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modes in the x and z directions and Chebyshev polynomials up to 289 in the y direction

are used. For time integration, the second-order Adams-Bashforth and Crank-Nicolson

schemes are adopted for the nonlinear and diffusion terms, respectively. For the high

Schmidt number of 100, a hybrid DNS/LES scheme described below is employed.

2. 2 Hybrid DNS/LES scheme

Since the concentration dissipation wave number, i.e., the Batchelor wave number kB,

is generally proportional to Sc1/2  (Batchelor, 1959), N 3 Sc3/2  computational grids are

required in order to resolve all essential scales of the concentration field. In the case of

the interfacial mass transfer, most concentration change occurs in the vicinity of the

interface. Therefore, for a concentration field at Sc = 100, we apply a hybrid DNS/LES

method, which employs DNS with high-resolution grids within a near-interface region

y+ < 11.3, while LES with coarser grids for the outer layer y+ > 21.5. We provide a

switching region between them in order to connect the two regions smoothly. The depth

of the DNS region is determined so that more than 95 % of the mean concentration

change should be resolved by DNS. For spatial discretization, Fourier series are used in

the x and z directions, and the finite volume method is employed in the y direction.

Turbulent and molecular mass fluxes in the y direction are evaluated at a surface of a

control volume in the second-order accuracy. In the DNS and switching regions, Fourier

modes up to 8 times that for the velocity field are employed in the x and z directions,

whereas in the LES region, the same grid system as that for the velocity field is used.

Since the finer computation grid is employed for the concentration field in the DNS and

switching regions, the fluid velocity calculated on the coarser grid should be

appropriately interpolated onto the finer grids in order to evaluate the convective terms.

In this study, a Fourier interpolation scheme, namely, the fast Fourier transform (FFT)

with higher wavenumber components set to be zero, is employed for the x and z

directions.

When we employ the hybrid DNS/LES scheme, we note the following issues:

1. Depth of DNS region

2. Grid resolution in DNS region

3. Subgrid-scale model in LES region
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We study the first and second issues by running computations with different depths of

the DNS region (Cases 1 and 2) and different grid resolutions (Cases 1 and 3).

Computational conditions are listed in Table I.

As for the subgrid mass-flux model in the LES region, we employ the Dynamic

Smagorinsky Model (DSM), in which an unknown coefficient is calculated by Germano

identity with the double-filtering procedure (Germano et al., 1991). It is possible to use

more complex models such as the Dynamic Mixed Model (DMM) (Zang et al., 1993)

and the Dynamic Two-parameter Model (DTM) (Salvetti and Banerjee, 1995). It should

be noted, however, that the most concentration change occurs in the DNS region and the

contribution of the subgrid-scale mass flux on the total mass transfer is found to be

quite small, i.e., less than 3 %, over the whole domain. Therefore, the effect of the

subgrid model on the total mass transfer is considered to be insignificant. Details of the

numerical scheme can also be found in Hasegawa and Kasagi (2005 and 2007).

The time increment is t+ = 0.018 in Cases 1 and 2, while t+ = 0.012 in Case

3, all of which are small enough to satisfy the Courant condition for solving the

concentration field. In order to obtain the statistics of velocity and concentration fields,

time integration is repeated for t+ = 2000 after the velocity and concentration fields

reached the statistically stationary state.
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3. Results

3. 1 Statistics of concentration field

The flow statistics under the present flow conditions have already been

reported in Lombardi et al. (1996) and Hasegawa and Kasagi (2005). The mean

concentration profiles near the free and solid surfaces at Sc = 100 are presented in Fig. 2.

The abscissa is the distance from the interface in the shear unit. The ordinate is the

mean concentration relative to the interfacial concentration non-dimensionalized by the

friction concentration. A distinct difference between the mean profiles near the free and

solid surfaces can be found. The mass transfer rate K
+
 is defined as:

K +
=
K *

u*
=

Q*

u* C
I

* C
B

*( )
=

1

CB
+

. (10)

Here, Q
*
, CI

*
 and CB

*
 are the mean mass flux and the mean concentrations at the

interface and the bulk, respectively, while CB
*
= CI

* CB
* . In the present calculation, K

+

= 0.0096 and 0.0032 at the free and solid surfaces, respectively. These values agree

reasonably well with the experimental results, i.e., K
+
 = 0.12Sc

-0.5
 at a sheared air-water

interface (Hanratty, 1991) and 0.0889Sc
-0.704

 at a solid surface (Shaw and Hanratty,

1977b). Slight underestimate of K
+
 at the free surface may be attributed to the neglect of

surface waves and turbulence generation at a bottom wall in the present calculation. The

present data at the solid surface also underestimates K
+
 by 8 %. This probably stems

from the low Reynolds number considered here.

The thickness +
d of the diffusive sublayer, in which C+

= Sc y+ is satisfied

within deviation of 5 %, roughly varies as Sc
-1/2

 and Sc
-1/3

 for free and solid surfaces,

respectively. Specifically, with increasing Sc from 1.0 to 100, +
d changes from 2.9 to

0.28 for the free surface, whereas 6.2 to 1.4 for the solid surface. Note that the empirical

correlation for a mean concentration profile near the solid surface proposed by Kader

(1981) is plotted for comparison. Kader’s relationship predicts a thinner diffusive

sublayer and a slightly lower concentration away from the interface. This trend is also

observed in recent calculations at low Reynolds numbers (Re  = 150 ~ 180) by Seki et al.

(2006) and Tiselj (2006). These facts suggest a need for modification of the empirical

relationship at a low Reynolds number.
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The concentration fluctuations crms, which are normalized by the difference

CB between the interfacial and bulk concentrations, are shown in Figs. 3 (a) and (b),

respectively. At Sc = 1.0, the peak locations y+
p near the solid and free surfaces are

almost the same, i.e., y+
p = 17.8. With increasing the Schmidt number from 1.0 to 100,

the peak location near the free surface moves closer to the interface, i.e., y+
p = 1.1 and

2.6 at the free and solid surfaces, respectively. Moreover, the peak value near the free

surface becomes more prominent at the high Schmidt number. These results suggest that

turbulent eddies exist close to the free surface and effectively generate concentration

fluctuations.

As a whole, fairly good agreement in the mean and fluctuating concentrations

among Cases 1, 2 and 3 is observed. Specifically, the differences in the mass transfer

rate K
+
 and the peak value of concentration fluctuation between the three cases are less

than 2 %. The boundaries between the DNS, switching and LES regions in Case 1 are

depicted in Figs. 2 and 3. By inserting the switching region, we obtained a smooth mean

concentration profile (see, Fig. 2). Although slight bump is observed at the connection

between the switching and LES regions in the profile of the concentration fluctuation,

comparison between Cases 1 and 2 shows that the depth of the DNS region does not

influence the concentration field close to the interface. The peak location of the

concentration fluctuation at Scw = 100 in Case 1 corresponds to the 11th and 17th grid

points from the free and solid surfaces, respectively. Hence, the present grid resolution

in the y direction is fine enough to resolve the sharp peak. These results indicate that the

grid resolution is sufficient and the depth of the DNS region is large enough to calculate

the concentration statistics. Hereafter, we show the concentration statistics obtained in

Case 1.

Figures 4 (a) and (b) present the correlation coefficients -Rcu and Rcv between

the concentration and the streamwise/normal velocity fluctuations. Distinct differences

in -Rcu and Rcv between free and solid surfaces become apparent in the neighborhood of

the surface. At Sc = 1.0, -Rcu is quite high near the solid surface due to similarity in the

boundary conditions, i.e., u’ = 0 and c’ = 0, as well as the governing equations. With the

Schmidt number increased, -Rcu is decreased near both free and solid surfaces.

Especially, the decrease of -Rcu near the solid surface is significant. An interesting

feature of the free surface is that Rcv is kept high ~ 0.6 even at the high Schmidt number
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(see, Fig. 4 (b)). In contrast, near the solid surface, Rcv is drastically decreased at the

high Schmidt number.

These results indicate that the concentration field near a solid surface becomes

less sensitive to the normal velocity fluctuations with increasing the Schmidt number,

whereas, near a free surface, the concentration field quickly responds to the normal

velocity fluctuation at a wide range of Schmidt numbers.

3. 2 Limiting behavior of eddy diffusivity near free and solid surfaces

Since the most concentration change occurs close to a surface at high Schmidt

numbers, the limiting behavior of concentration and velocity fields is of particular

importance for modeling mass transfer. Considering Eqs. (6-8) and a constant

concentration condition at a free surface, the fluctuating velocity and concentration

fields can be expanded in Taylor series as follows:

c+ ' = s1y
+
+ s3y

+3
+O y+4( ) , (11)

u+ ' = a0 + a1y
+
+O y+2( ) , (12)

v+ ' = b1y
+
+ b2y

+2
+O y+3( ) . (13)

Note that there is no y2 term in the equation of c’ because 2c '/ y2  should be

identically zero at an iso-concentration boundary. The asymptotic expressions for the

turbulent mass flux c 'v '  and the turbulent momentum flux u 'v '  are also given as:

c+ 'v+ ' = s1b1y
+2
+ s1b2y

+3
+O y+4( ) , (14)

u+ 'v+ ' = a0b1y
+
+ a0b2 + a1b1( )y+2 +O y+3( ) . (15)

Similarly, considering no-slip and constant concentration conditions, the following

expressions are obtained for the solid surface:

c+ ' = s1y
+
+ s3y

+3
+O y+4( ) , (16)

u+ ' = a1y
+
+ a2y

+2
+O y+3( ) , (17)
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v+ ' = b2y
+2
+ b3y

+3
+O y+4( ) , (18)

c+ 'v+ ' = s1b2y
+3
+ s1b3y

+4
+O y+5( ) , (19)

u+ 'v+ ' = a1b2y
+3
+ a1b3 + a2b2( )y+4 +O y+5( ) . (20)

The eddy diffusivity Ed
+ and the eddy viscosity Ev

+ are defined as:

Ed
+
= c+ 'v+ ' /

C+

y+
, (21)

Ev
+
= u+ 'v+ ' /

U +

y+
. (22)

Since the mean concentration and the mean streamwise velocity can be expanded as

C+
= Sc y+ +O y+2( )  and U +

= y+ +O y+2( ) , respectively, the limiting behavior of Ed
+

and Ev
+ near the free surface is obtained from Eqs. (14) and (15) as:

Ed
+
= A2y

+2
+O y+3( ) , (23)

Ev
+
= B1y

+
+O y+2( ) , (24)

where A2 = s1b1 / Sc  and B1 = a0b1 . Similarly, near the solid surface,

Ed
+
= A3y

+3
+O y+4( ) , (25)

Ev
+
= B3y

+3
+O y+4( ) . (26)

where A3 = s1b2 / Sc  and B3 = a1b2 .

In Fig. 5, the limiting behavior of Ed
+ and Ev

+ near the free and solid surfaces

is represented. Near the free surface, Ed
+ is almost independent of the Schmidt number.

On the other hand, near the solid surface, Ed
+ is drastically decreased with the Schmidt

number increased. The relation Ed
+
= 0.000463y+3.38  suggested by Shaw and Hanratty

(1977b) based on their experiment at Sc = 700 to 37000 is also plotted in Fig. 5. The

present result at Sc = 100 decreases faster than y
3
 as the solid surface is approached, and

excellent agreement with the experimental result can be confirmed.
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According to Eq. (25), there should exist a thin layer in which 
  
E

d

+ y+3 . In

order to investigate more closely, the limiting behavior of Ed
+ / y+3  and Ev

+ / y+3  near the

solid surface is shown in Fig. 6. Due to Eqs. (25) and (26), the limiting values of

Ed
+ / y+3 and Ev

+ / y+3 at the solid surface should be identical to A3 and B3, respectively.

At Sc = 1.0, Ed
+  agrees well with Ev

+  in the near-surface region. This confirms the

validity of analogy between momentum and mass transfer at Sc = 1.0.

At Sc = 100, however, A3 is decreased by about 80 % with the Schmidt

number increased from 1.0 to 100. Moreover, the thickness of the region where Ed
+ / y+3

is constant decreases with increasing the Schmidt number. This suggests that the

assumption of constant Ed
+ / y+3  is valid only inside the diffusive sublayer, where the

contribution of turbulent transport is quite small compared with that of molecular

transport. The similar trend is also reported in Na and Hanratty (2000) at moderate

Schmidt numbers up to Sc = 10. These facts indicate the analogy between momentum

and mass transfer at the high Schmidt numbers is not likely to hold. A mean

concentration profile calculated by assuming Ed
+
= Ev

+  is plotted with a solid line in Fig.

2. Clear discrepancy with the hybrid DNS/LES data is confirmed.

Limiting values at free and solid surfaces obtained in the present and previous

studies are summarized in Table 2. In the case of a solid surface,

  
lim
y 0

c+ '2 / C+ C
I

+( ){ } = s
1

2 / Sc  is gradually decreased with increasing the Schmidt

number. In contrast, at a free surface, s1
2 / Sc  is slightly increased with Sc. This is

consistent with the prominent peak of concentration fluctuation near the free surface in

Fig. 3 (b).

The turbulent Schmidt number Sct is defined as:

Sct =
Ev

+

Ed
+

. (27)

The limiting values of Sct are also listed in Table 2 together with the data at Sc = 10

reported by Na and Hanratty (2000) and Seki et al. (2006). Monotonic increase of Sct

with Sc at a solid surface can be confirmed. This corresponds to the drastic decrease of

Ed
+
 at the high Schmidt number in Fig. 5.

In the following section, we will study frequency spectra of the concentration

field close to free and solid surfaces, in order to explain these differences in the Schmidt
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number effects between free and solid surfaces.

4. Frequency Spectra at High Schmidt Number

Because of a thin concentration boundary layer at high Schmidt numbers,

derivatives in the y direction are much larger that those in other two directions. Hence,

the transport equation near a surface can be simplified as:

c

t
+ v

c

y
=
1

Sc

2c

y2
. (28)

Here, all variables are normalized by the shear units. A fundamental difference between

solid and free surfaces is that the normal velocity fluctuation v varies quadratically with

y near a solid surface, while linearly near a free surface. McCready and Hanratty (1984)

explored how the limiting behavior of v affects the sensitivity of the concentration

boundary layer to velocity fluctuations. By substituting v = y2 exp i t( )  into Eq. (28),

the following relationship is obtained for a solid surface:

  

W
q ( )
Q2

=
4W ( )
Sc 3

, (29)

Similarly, for a free surface, substitution of v = y exp i t( )  results in:

Wq ( )

Q2
=
W ( )

2 , (30)

where Wq, W  and W  are frequency spectra of the interfacial mass flux q, and  and ,

respectively. Note that Eqs. (29) and (30) are valid only for high frequencies, i.e.,

Sc >> 1.

In Figs. 7 (a) and (b), Wq, W  and W  at the solid and free surfaces are plotted.

Excellent agreement between the present calculation and Eq. (29) is observed for the

solid surface (see, Fig. 7 (a)). The appearance of the Schmidt number in the

denominator of Eq. (29) explains the strong damping of the concentration fluctuation at

high Schmidt numbers. In the case of the free surface, however, the damping of

concentration fluctuations at the high Schmidt number is insignificant and the frequency

spectrum again agrees fairly well with the theoretical prediction by Eq. (30). Note that

Eq. (30) is independent of the Schmidt number.

The damping effect on concentration fluctuation near a solid surface has great
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influence on the transport mechanisms. Frequency co-spectrum Wcv of the turbulent

mass transport c 'v '  at y+ = 3.2 from solid and free surfaces are shown in Figs. 8 (a) and

(b), respectively. Here, Wcv is defined as:

c 'v ' = Wcvd
=0

. (31)

Near the solid surface, the contribution of high-frequency fluctuations to the turbulent

mass transfer drastically decreases with increasing the Schmidt number. In contrast,

near the free surface, the profile is almost unchanged. Although we show the frequency

spectra only at a single point here, similar tendency is observed throughout the viscous

sublyer, where v varies as y and y
2
 near the free and solid surfaces, respectively.

These results indicate that lower-frequency velocity fluctuations dominate the

turbulent mass transfer near the solid surface at higher Schmidt numbers, while a wide

range of frequencies play an important role near the free surface.
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5. Visualization

Visualizations of instantaneous streamwise and surface-normal velocity

components u
+
 and v

+
 at y

+
 = 3.2 and interfacial mass fluxes q

+
 for Sc = 1.0 and 100 at a

free surface are shown in Figs. 9 (a-d), respectively. In general, low mass-flux regions

have streaky structures, which correspond to low-speed streaks in Fig. 9 (a). They

become finer with the Schmidt number increased. On the other hand, high mass-flux

regions are characterized by spotty structures. These structures are almost independent

of the Schmidt number and even more highlighted at Sc = 100. It is also observed that

the high mass-flux regions correspond to the regions where v is negative (see, the dotted

regions in Figs. 9 (b-d)). This fact indicates that impingement of fresh liquid on the free

surface is essential for the mass transfer. This is consistent with the high Rcv close to the

free surface in Fig. 4 (b). The details of the transport mechanisms near the free surface

are reported in Hasegawa and Kasagi (2007).

Visualizations of velocity and concentration fields near a solid surface are

shown in Figs. 10 (a-d). At Sc = 1.0, q
+
 is highly correlated with u

+
 in concurrence with

high Rcu in Fig. 4 (a). At Sc = 100, distinct differences between the concentration fields

close to the solid and free surfaces are found. The mass-flux fluctuations at the solid

surface are quite calm compared with those near the free surface (compare Fig. 10 (d)

with Fig. 9 (d)). Furthermore, both low and high mass-flux regions at the solid surface

have streaky structures. By carefully comparing Fig. 10 (d) with Fig. 10 (c), it is also

observed that the high mass-flux streaks at Sc = 100 frequently lie about x 
+
 = 200

downstream of the high mass-flux spots at Sc = 1.0 (see, the dotted circles in Figs. 10

(c) and (d)). This is in a striking contrast with the distribution of the mass flux at the

free surface shown in Fig. 9 (d), in which the concentration field quickly responses to

the normal velocity fluctuation even at the high Schmidt number.

Totally, these visualizations support the results of the frequency analyses in

Sec. 4. Namely, the velocity fluctuations at lower frequencies dominate the transport

processes near the solid surface at higher Schmidt numbers.
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6. Conclusions

Distinct differences are observed between the concentration fields near free

and solid surfaces at high Schmidt numbers. Near the free surface, the concentration

field quickly responses to the normal velocity fluctuation and the limiting behavior of

the eddy diffusivity is almost independent of the Schmidt number. On the other hand,

near the solid surface, the concentration field becomes insensitive to the normal velocity

fluctuation and the limiting value of the eddy diffusivity is decreased by around 80 %

with the Schmidt number increased from 1.0 to 100.

The present results show that the thickness of the region where Ed
+ y+3  is

decreased with increasing the Schmidt number and this region always lies in the diffsive

sublayer where the turbulent transport is not significant. These results suggest that the

analogy between momentum and mass transfer near the solid surface can not be used at

high Schmidt numbers. These trends agree fairly well with the previous DNS results at

moderate Schmidt numbers up to Sc = 10 reported by Na and Hanratty (2000) and Seki

et al. (2006).

The fundamental differences between the concentration fields near solid and

free surfaces can be attributed to the difference of the spatial variation of the normal

velocity fluctuation near the surfaces. According to the theoretical analysis of a one-

dimensional advection-diffusion equation by McCready and Hanratty (1984), it is

shown that near the free surface, where the normal velocity varies linearly with y, the

frequency spectrum of the concentration fluctuation is independent of the Schmidt

number. In contrast, near the solid surface, where the normal velocity varies

quadratically with y, similar analysis (Shaw and Hanratty, 1977a) revealed that high-

frequency concentration fluctuations are strongly damped with increasing the Schmidt

number. The present results show quantitative agreement with the theoretical

predictions at both free and solid surfaces.

Due to this damping effect, the contribution of high-frequency velocity

fluctuations to turbulent mass transport are drastically decreased near a solid wall. This

is the primary reason for the breakdown of the analogy between momentum and mass

transfer. If we assume that the profile of the eddy diffusivity is unchanged from the

present result even at higher Schmidt numbers, the prediction obtained by assuming
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E

d

+
= E

v

+  overestimates the mass transfer rate about 5 %, 15% and 30% at Sc = 100,

1000 and 10000, respectively.

The damping effect also affects the instantaneous distribution of the mass flux

at the solid surface. Visualization results show that high mass-flux regions at Sc = 100

have highly elongated streaky structures and seem to happen a certain period of time

after high mass-flux events occur at Sc = 1.0. More detailed investigation is required to

clarify this issue. The present results underline the necessity of developing a mass

transfer model which takes into account the damping effect near the solid surface.
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Figure Captions

Fig. 1 Computational domain and coordinate system (a) free surface, (b) solid

surface.

Fig. 2 Mean concentration profiles near free and solid surfaces.

Fig. 3 Concentration fluctuations near (a) solid and (b) free surfaces.

Fig. 4 Correlation coefficients (a) -Rcu and (b) Rcv.

Fig. 5 Limiting behavior of eddy viscosity Ev and eddy diffusivity Ed near free and

solid surfaces.

Fig. 6 Limiting behavior of Ev
+
 / y

+3
 and Ed

+
 / y

+3
 near solid surfaces.

Fig. 7 Frequency spectra of interfacial mass flux q and coefficients  and  of Taylor

expansion of normal velocity fluctuation near (a) solid and (b) free surfaces.

Fig. 8 Frequency co-spectra of turbulent mass flux c 'v '  at y
+
 = 3.2 from (a) solid and

(b) free surfaces.

Fig. 9 Visualization of velocity and concentration fields near a free surface.

(a): streamwise velocity u
+
, (b): surface-normal velocity v

+
 at y

+
 = 3.2 and

interfacial mass flux q
+
 at (c): Sc = 1.0 and (d): Sc = 100.

Fig. 10 Visualization of velocity and concentration fields near a solid surface.

(a): streamwise velocity u
+
, (b): surface-normal velocity v

+
 at y

+
 = 3.2 and

interfacial mass flux q
+
 at (c): Sc = 1.0 and (d): Sc = 100.
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Table 1 Number of modes, number of grid points and grid spacings

Region k
x
, k

y
or N

y
, k

z
Δx+ Δy+ Δz+

Velocity DNS 0 < y+ < 150 64, 129, 64 18.4 0.01 ~ 1.23 7.2

Case 1

DNS 0 < y+ < 11.3 192, 34, 192 6.1 0.01 ~ 0.62 2.4

Buffer 11.3 < y+ < 21.6 192, 15, 192 6.1 0.66 ~ 0.85 2.4

LES 21.6 < y+ < 150 64, 144, 64 18.4 0.86 ~ 1.23 7.2

Case 2

DNS 0 < y+ < 22.8 192, 50, 192 6.1 0.01 ~ 0.79 2.4

Buffer 22.8 < y+ < 35.4 192, 15, 192 6.1 0.81 ~ 0.85 2.4

LES 35.4 < y+ < 150 64, 122, 64 18.4 0.86 ~ 1.23 7.2

Velocity DNS 0 < y+ < 150 64, 289, 64 18.4 0.002 ~ 0.38 7.2

Case 3

DNS 0 < y+ < 16.5 512, 94, 512 2.3 0.002 ~ 0.34 0.9

Buffer 16.5 < y+ < 21.6 512, 15, 512 2.3 0.35 ~ 0.38 0.9

LES 21.6 < y+ < 150 64, 324, 64 18.4 0.002 ~ 0.38 7.2
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Sc = 1.0 Sc = 10 Sc = 100

s1
2 / Sc

0.402 (present)

0.403 (Na & Hanratty)
0.393 (Na & Hanratty)

0.325

(present)

A3 x10
-3

0.722 (present)

0.730 (Na & Haratty)
0.503 (Na & Hanratty)

0.118

(present)

B3 x10
-3

0.728x10
-3

 (present), 0.790x10
-3

 (Na & Hanratty)

Solid

surface

t
Sc = B3/ A3

0.992 (present)

1.08 (Na & Haratty)

1.57 (Na & Hanratty)

1.47 (Seki et al.)

6.19

(present)

s1
2 / Sc 0.590 (present) -

0.654

(present)

A2 0.0197 (present) -
0.0247

(present)

Free

surface

B1 0.0335 (present)

Table 2 Limiting values at free and solid surfaces



25

(a) (b)

U C
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U C

x

y

c = 1 c = 1

c = 0free slipc = 0free slip

Air flow no slip
u = v = w = 0

u = uair, w = wair
v  = 0

δ δ

Fig. 1 Computational domain and coordinate system

(a) free surface, (b) solid surface.



26

400

300

200

100

0

C
+

0.1 1 10 100

y+

Sc = 100
: Case 1
: Case 2
: Case 3
: Kader (1979)
: Model (Ed = Ev)

C+ = 100y+

DNS
region

LES
region

Switching
regionFree surface

Solid surface

Fig. 2 Mean concentration profiles near free and solid surfaces.
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Fig. 3 Concentration fluctuations near (a) solid and (b) free surfaces.
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Fig. 4 Correlation coefficients (a) -Rcu and (b) Rcv.
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Fig. 5 Limiting behavior of eddy viscosity Ev
+
 and eddy diffusivity Ed

+

near free and solid surfaces.
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Fig. 6 Limiting behavior of Ev
+
 / y

+3
 and Ed

+
 / y

+3
 near solid surfaces.
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Fig. 7 Frequency spectra of interfacial mass flux q and coefficients  and  of

Taylor expansion of normal velocity fluctuation near

(a) solid and (b) free surfaces.
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Fig. 9 Visualization of velocity and concentration fields near a free surface.

(a): streamwise velocity u
+
, (b): surface-normal velocity v

+
 at y

+
 = 3.2 and

 interfacial mass flux q
+
 at (c): Sc = 1.0 and (d): Sc = 100.
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Fig. 10 Visualization of velocity and concentration fields near a solid surface.

(a): streamwise velocity u
+
, (b): surface-normal velocity v

+
 at y

+
 = 3.2 and

 interfacial mass flux q
+
 at (c): Sc = 1.0 and (d): Sc = 100.
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