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Abstract - A series of numerical simulation is carried out for high Schmidt number 

turbulent mass transfer across interfaces of different dynamical conditions, i.e., a clean 

or contaminated free surface and also a solid surface. A distinct feature of free surface 

turbulence close to a contaminated interface is drastic damping of the surface 

divergence fluctuations at low frequencies, which play a critical role in the interfacial 

mass transfer. Various concentration statistics reveal that the transport mechanism at a 

highly contaminated interface becomes dynamically equivalent to that at a solid surface. 

Consequently, the interfacial mass transfer rate falls down to the value on a solid surface, 

so that the Schmidt number dependency of the mass transfer rate switches from Sc–0.5 to 

Sc–0.7. Based on a one-dimensional advection-diffusion equation, it is demonstrated that 

the ratio between typical intensity and frequency of the fluctuating surface divergence is 

a critical parameter for the transition of the turbulent mass transfer mode. 
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Notation 
c concentration of solute 

C mean concentration  

CB bulk mean concentration 

CI mean concentration at an interface 

cτ friction concentration 

D molecular diffusivity  

Ed eddy diffusivity 

k  kinetic energy 
kx, ky, kz number of modes in streamwise, interface-normal and spanwise directions 

L integral length scale 

p pressure 

q local mass transfer rate (dimensionless local mass flux) 

Q global mass transfer rate (dimensionless global mass flux) 

Rαβ correlation coefficient between α and β 
ReT Reynolds number based on macroscopic velocity scale uT and integral length 

scale L 

Reτ Reynolds number based on friction velocity uτ and depth δ 

n Schmidt number exponent of mass transfer rate 
N number of grid points 
Sc Schmidt number 

t time 

U mean streamwise velocity 

u, v, w velocity components in the x, y, and z directions 

uT macroscopic velocity scale 

uτ friction velocity 

Wβ frequency spectrum of the surface divergenceβ 

x, y, z streamwise, interface-normal and spanwise directions 

yp peak location of concentration fluctuation 

 

Greek 

β surface divergence 
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βE effective surface divergence 

ΔC difference between mean concentrations at an interface and a bottom boundary 

ΔCB difference between interfacial and bulk mean concentrations 

Δt time step 

Δx, Δy, Δz  grid spacings in streamwise, interface-normal and spanwise directions 
δ depth of computational domain 
δc thickness of diffusive sublayer 

γ surfactant concentration 
ν kinematic viscosity 

ρ fluid density 

σ surface tension 
τ interfacial shear stress 

ω frequency 

 

Superscript 

( )* dimensional value 

( ) + value non-dimensionalized by the shear unit 

( )’ fluctuating component 

( )  mean component 

Subscript 

( )a value in the air phase 

( ) w value in the water phase 

( ) 0 value at equilibrium 
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1. Introduction 
 

It is well-known that the absorption of surface-active agents, i.e., surfactants 

drastically retards interfacial mass transfer. For example, Frew (1997) conducted 

laboratory experiments under an identical wind velocity with seawaters sampled at 

different areas. They showed that the reduction rate of the mass transfer rate was as high 

as 90% in the case of coastal waters containing the highest level of surfactants. This 

suggests that the unique relationship between the wind velocity and the mass transfer 

rate, which is usually assumed in estimating the atmosphere-ocean gas flux, is unlikely 

to exist for natural waters. 

 In natural waters, surfactants are commonly present due to marine exudates, 

excretion and degradation products of phytoplankton, machine lubricants and so forth. 
In general, surfactants influence air-water gas exchange through static and dynamic 

mechanisms. The static effect represents the additional resistance to mass transfer due to 

physical barrier provided by a surfactant layer. This effect is considered to be minor in 

the real ocean (Frew, 1997; Donelan & Wanninkhof, 2002). In contrast, the dynamic 

effect is pronounced even at a slightly contaminated interface. The viscoelastic 

properties of a contaminated interface modify interfacial boundary conditions so as to 

oppose eddy motions close to the interface (Davies, 1966). As a result, free surface 

turbulence and associated gas exchange are strongly damped. In the present study, we 

focus on the hydrodynamic effect, which is also referred to Marangoni effect. 

Up to now, numerous studies of gas transfer across clean and contaminated 

air-water interfaces have been carried out in stirred vessels and wind-wave facilities, 

e.g., Asher and Pankow (1986) and Jähne et al. (1987). In these studies, a common trend 

has been observed. Specifically, the mass transfer rate Q increases only slowly below a 

critical wind velocity, while it suddenly increases beyond the critical wind velocity. It 

was also confirmed that the Schmidt number dependence of Q switches from 

Q ∝ Sc−0.7  to Q ∝ Sc−0.5  above the critical wind velocity (Jähne et al., 1987). Since 

the Schmidt number of slightly soluble gases such as CO2 is generally high (Sc = 

O(103)), the transition of the mass transfer mode causes a tenfold difference in the mass 

transfer rate.  

So far, most researchers have been attributing the transition of the mass 

transfer mode to capillary-gravity waves, which start to grow beyond the critical wind 
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velocity. In contrast, Jähne et al. (1987) argued that the change in the Schmidt number 

dependency of the mass transfer rate indicates a change in the transport mechanism. It 

should be a transition from a rigid to a free surface regime rather than from a smooth to 

a rough regime. Actually, direct measurement of concentration fluctuations close to an 

interface (Lee et al., 1980; Asher and Pankow, 1986) indicate that surface renewal 

eddies are retarded due to surface contamination, and therefore the concentration 

fluctuations are drastically decreased inside a viscous sublayer. Despite considerable 

researches, interaction between underlying eddies and a contaminated interface, and 

associated turbulent mass transfer have not been well understood due to various 

obstacles in simultaneous measurement of the velocity and concentration fields close to 

a free surface. 

Numerical simulations are quite useful in clarifying such microscopic 

transport phenomena close to an interface. For example, Tsai and Yue (1995) studied 

laminar interactions between a contaminated free surface and a vortical flow below. 

Shen et al. (2004) studied turbulence structures close to a contaminated shear-free 

surface and observed drastic damping of up- and downwelling motions, which play a 

critical role in near-surface turbulent transport. Handler et al. (2003) clarified the 

relationship between an interfacial thermal field and underlying free surface turbulence 

close to a contaminated interface by direct numerical simulations (DNS). However, no 

numerical study focuses on the transition of the mass transfer mode so far. 

 In the present study, we conduct numerical simulation of high Schmidt 

number turbulent mass transfer across clean, contaminated and solid interfaces in order 

to understand how an interfacial dynamical condition influences the interfacial mass 

transfer. We pay particular attention to the transition mechanisms of the turbulent mass 

transfer mode by systematically changing the Marangoni number representing a degree 

of surface contamination. We will proceed as follows. First, we show fundamental 

statistics inside a concentration boundary layer close to clean, contaminated and solid 

interfaces. Then, we study the transition mechanisms of the turbulent mass transfer 

mode at a contaminated interface. Finally, a critical parameter for the transition is 

discussed. 
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2. Computational Model and Numerical Method 
 

2. 1 Numerical conditions 

In this study, we consider a countercurrent air-water flow driven by constant 

pressure gradient as shown in Fig. 1, where x, y and z are the streamwise, 

interface-normal and spanwise directions, respectively. This configuration is 

advantageous for highlighting the effects of interfacial shear stress, since the free-slip 

boundary condition can be imposed at the bottom boundary to minimize its effects. It 

should be also noted that this configuration is nearly equivalent to a co-current air-water 

flow in which a coordinate system moves at the same speed as that of the interface, 

because the mean pressure gradient plays only a minor role compared with the 

interfacial shear in the near-interface region. 

  The governing equations of the velocity field are the incompressible 

Navier-Stokes and the continuity equations: 

 
∂ui
∂t

+
∂ ujui( )
∂x j

= −
∂p
∂xi

+
1
Re

τ

∂2ui
∂x j∂x j

 , (1) 

 ∂ui
∂xi

= 0 . (2) 

Here, the velocity ui and the coordinate xi are non-dimensionalized by the interfacial 

friction velocity uτ
* and the depth δ* in each phase. The friction velocity is defined as 

uτ
* = τ * / ρ* , where τ is the interfacial shear stress and ρ is the density of each phase. A 

value with an asterisk represents a dimensional value throughout this article. The 

Reynolds numbers based on uτ
* and δ* are Reτw  = Re τ a  = 150, which approximately 

correspond to an air-water flow at a wind speed of 2 m/s at ya
* = δ* and δ* of 4 cm under 

the standard condition where the temperature is 298.15 K and the pressure is 105 Pa. 

Variables with subscripts of a and w represent values in the air and water phases, 

respectively. The density ratio of water and air is ρ*
w / ρ*

a = 841.  

The computational periods are 2.5πδ* and πδ* in the x and z directions, 

respectively. We confirmed that the extension of the computational domain does not 

affect the velocity and concentration statistics discussed here. A free-slip condition is 
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imposed at the outer boundaries in both phases. A pseudo-spectral method is applied for 

spatial discretization. 64 x 64 Fourier modes and 128 Chebyshev polynomials are used 

in the horizontal and normal directions, respectively. The grid resolution employed for 

the velocity field is listed in Table 1. Computation with doubled modes in each direction 

was conducted to ensure that the present grid system is fine enough to resolve all 

essential scales of the velocity field. For time integration, the second-order 

Adams-Bashforth scheme is adopted for the advection terms, while the Crank-Nicolson 

scheme for the viscous terms.  

 

2. 2 Hybrid DNS/LES Scheme 

 The transport equation of solute concentration is given by:  

 
∂c
∂t

+
∂ ujc( )
∂x j

=
1

ScRe
τ

∂2c
∂x j∂x j

, (3) 

where, the concentration c is normalized by the concentration difference ΔC* between 

the interface and the bottom boundary in the water phase. In general, except for highly 

soluble or reactive gases, the most mass transfer resistance exists on the water side 

(Jähne and Haubecker, 1998). In addition, Hasegawa and Kasagi (2008) showed that 

air-water coupling effects of the concentration fields are insignificant in the present 

configuration. Hence, we solve the concentration field only in the water phase under 

constant concentration conditions, i.e., c = 1.0 and 0 at the interface and the bottom 

boundary, respectively. The Schmidt number Sc = ν*/ D* is defined by the kinematic 

viscosity ν* and the molecular diffusivity D* of a solute. In the present study, Sc is 

changed as 1.0 and 100. In the case of Sc = 1.0, the same numerical scheme and grid 

system as those for the velocity field are used (see, Table 1).  

 For resolving a thin concentration boundary layer at Sc = 100, we apply a 

hybrid DNS/LES scheme, which employs DNS with high-resolution grids within the 

near-surface region, while large-eddy simulation (LES) with coarser grids in the outer 

layer (Hasegawa and Kasagi, 2007). By employing such a solution-adaptive scheme, we 

can calculate the high Schmidt number concentration field with reasonable cost, while 

maintaining accuracy near the interface. In order to connect the DNS and LES regions 
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smoothly, we provide a switching region between them, where the subgrid-scalar flux is 

gradually imposed with the distance from the interface. A pseudo-spectral method is 

adopted in the horizontal directions, while a finite-volume method in the normal 

direction. The details of the hybrid DNS/LES scheme can be found in Hasegawa and 

Kasagi (2007). 

 In employing the hybrid DNS/LES, we note the following issues.   

1. Depth of DNS region δDNS 

2. Grid resolution in DNS region 

3. Subgrid-scale model in LES region 

Hasegawa and Kasagi (2007) conducted thorough verification on these issues 

at two limiting regimes of a clean free surface and a solid wall. Specifically, the depth 

of the DNS region was changed from δDNS+  = 11.3 to 22.8. The numbers of Fourier 

modes employed in the x and z directions were increased 192 to 512, while the number 

of grids in the y direction in the DNS and switching regions was changed from 49 to 

109. From these calculations, it was shown that δDNS+  = 11.3 and 192 x 192 Fourier 

modes in the horizontal directions are sufficient to obtain the fundamental concentration 

statistics. The depth and the grid resolution in the DNS, LES and switching regions are 

listed in Table 1. The dynamic Smagorinsky model (Germano et al., 1991) is used in the 

LES region. Considering that a contaminated interface generally falls between clean and 

solid interfaces, we adopt the same grid system for contaminated interfaces.  
 

2. 3 Interfacial Boundary Conditions 

  Since we focus on effects of an interfacial dynamical condition on the mass 

transfer, the interface is assumed to be flat for simplicity, i.e., vw = va = 0 . The resultant 

interfacial boundary conditions for the velocity field are the continuity of velocity 

components and the balance of the shear stress and the surface tension in the tangential 

directions. They are written in dimensionless forms as: 
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 uwj =
ρw
*

ρa
* uaj  (4) 

 1
Reτw

∂uwj
∂x2

=
1
Reτa

∂uaj
∂x2

−
1
We

∂σ
∂x j

 (5) 

Here, j = 1 or 3. The surface tension σ is normalized by the equilibrium surface tension 

σ 0
*. The Weber number is defined by We = τ *δ * /σ 0

* . 
Generally, a contaminated interface exhibits complex stress response to 

compressional and dilational straining (Frew, 1997). For simplicity, we assume the 

following linear relationship between the surface tension σ and the surfactant 

concentration γ (Handler et al., 2003; Shen et al., 2004):  
 σ −1 = Ma 1− γ( ) . (6) 

Here, γ  is normalized by the equilibrium concentration γ 0
*. It should be noted that Eq. 

(6) is valid for a highly contaminated interface in which γ ’ << 1. The Marangoni 

number is defined by Ma = − γ 0
* /σ 0

*( ) ⋅ dσ * / dγ *( )
γ =1

. By substituting Eq. (6), the 

interfacial boundary condition (5) can be rewritten as: 

 1
Reτw

∂uwj
∂x2

=
1
Reτa

∂uaj
∂x2

+
Ma
We

∂γ
∂x j

. (7) 

In the present study, the Weber number is kept constant, i.e., We = 9.0 x 10-4, 

while the Marangoni number is systematically changed as Ma = 0 (Clean), 1.0 x 10-3 

(Case 1), 1.0 x 10-2 (Case 2) and 1.0 x 10-1(Case 3). Note that Ma = 0 coresponds to a 

clean interface. In addition to the four cases, a solid surface is also considered for 

comparison by imposing a no-slip condition at the interface instead of Eqs. (4) and (7). 

All computational conditions are summarized in Table 2. 

 The transport equation of an insoluble surfactant gives rise to: 

 ∂γ
∂t

+
∂ uwγ( )
∂x

+
∂ wwγ( )

∂z
=

1
Scγ Reτw

∂2γ
∂x2

+
∂2γ
∂z2

⎛
⎝⎜

⎞
⎠⎟

. (8) 

Note that the total amount of the surfactant on the interface is always conserved. The 

Schmidt number of the surfactant is Scγ  = 1.0 in all cases.  

 The whole computation proceeds as follows. First, the governing equations (1, 

2) for the velocity fields in the air and water phases are solved under the coupled 
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interfacial boundary conditions (4) and (7). Similarly, the transport equation (3) of the 

solute concentration is solved in the water phase. The obtained velocity field at the 

interface is used for solving the surfactant transport equation (8). The resultant 

surfactant concentration is assigned to the interfacial velocity boundary condition (7) in 

the next step. The time step in the shear unit is tw
+ = 0.018  in all calculations so that 

the Courant conditions for solving the velocity and concentration fields should be met. 

After the velocity and concentration fields reached the statistically steady state, we 

integrated the set of the governing equations up to tw
+ = 2000  in order to obtain the 

statistics shown below. 

 

3. Results 
 
3. 1 Velocity Field 

 Since the interface is dynamically similar to a solid surface for the air flow 

due to large density ratio between water and air (Lombardi, et al., 1996), and the total 

gas exchange is determined by the microscopic transport phenomena on the water side, 

we focus on the flow statistics on the water side. The mean velocity profiles in the water 

phase relative to the interfacial velocity are shown in Fig. 2. Although the logarithmic 

region with the same slope is observed, a gap in the mean velocity profiles exists 

between a clean interface and a solid wall. With increasing the Marangoni number, 

thickness of the viscous sublayer is gradually increased, and eventually the profile 

converges to that near a solid wall. 

 The velocity fluctuations plotted in Fig. 3 exhibit distinct features close to the 

contaminated interface. Specifically, the streamwise and spanwise velocity fluctuations 

are kept almost unchanged, while only the normal velocity fluctuation is damped 

drastically with increasing the Marangoni number. This indicates that the velocity field 

near a highly contaminated interface is essentially different from that near a solid 

surface.  

 In order to clarify the surfactant effects on the flow field, the interfacial 

velocity vector is decomposed into irrotational and solenoidal components by applying 
Helmholtz’s theorem as illustrated in Fig. 4. Once ∂v / ∂y  and ω y  at the interface are 

calcuated, the two components can be obtained by solving the following set of 
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equations:  

 

  

∂uIR

∂x
+
∂wIR

∂z
= −

∂v
∂y y=0

∂uIR

∂z
−
∂wIR

∂x
= 0

,

⎧

⎨
⎪
⎪

⎩
⎪
⎪

∂uSL

∂x
+
∂wSL

∂z
= 0

∂uSL

∂z
−
∂wSL

∂x
= −ω y y=0

⎧

⎨
⎪⎪

⎩
⎪
⎪

. (9) 

Here, the vectors with subscripts of IR and SL represent irrotational and solenoidal 

components, respectively. The partial kinetic energy kIR and kSL held by the two 

components, and their relative contributions to the total kinetic energy kTotal = kIR + kSL 

are listed in Table 2. A distinctive feature of a contaminated interface is selective 

damping of the irrotational motion. Hence, the contaminated interface behaves like a 

no-slip boundary for the irrotational motion, while a free-slip boundary for the 

solenoidal motion. This is reasonable because the additional shear stress due to a 

surfactant appears as gradient of the surfactant concentration γ in Eq. (7). Since 
∇ × ∇γ( ) = 0 , a surfactant does not directly produce the interface-normal vorticity. 

 The irrotational motion is directly linked to the surface divergence β, which is 

defined by two dimensional divergence of the tangential velocity on the interface. 

 
  
β =

∂u
∂x

+
∂w
∂z

⎛
⎝⎜

⎞
⎠⎟ y=0

= −
∂v
∂y

⎛
⎝⎜

⎞
⎠⎟ y=0

. (10) 

Note that the surface divergence is equivalent to the interface-normal derivative of v due 

to the continuity. The drastic damping of the surface divergence is also observed in the 

numerical study of a shear-free interface by Shen et al. (2004). 

Since v’ plays a critical role in the mass transfer, the surface divergence has 

been considered as a key parameter for predicting the mass transfer. In fact, recent 

experiments indicate that statistical properties of the surface divergence can be related 

to the mass transfer rate regardless of a mode of turbulence generation, surface 

contamination and interfacial deformation (Law and Khoo, 2002; McKenna and 
McGillis, 2004; Turney et al., 2005). The frequency spectra Wβ  of the surface 

divergence at clean and contaminated interfaces are shown in Fig. 5. In calculating Wβ , 

the time traces of the local surface divergence on 64 x 64 uniform grids at the interface 

were stored per t+ = 0.3 for a period of t+ = 3000. Before applying FFT, we multiplied 

the time-series data by a window function with a long constant value sandwitched 

between two short cosine bells (Bingham, et al., 1967) in order to avoid spreading of 

spectra due to limited sampling time. It is found that low-frequency fluctuations are 
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drastically decreased with increasing the Marangoni number. As will be discussed in 

Sec. 3, this leads to drastic change of turbulent mass transfer mode, even though the 

irrotational motions contain only a small fraction of the total kinetic energy (see, Table 

2.) 

 

3. 2 Concentration Field 

The mean concentration profiles near the clean, contaminated and solid 

interfaces at Sc = 100 are presented in Fig. 6. The abscissa is the distance from the 

interface in the shear unit. The ordinate is the mean concentration relative to the 

interfacial concentration non-dimensionalized by the friction concentration. Here, the 
friction concentration is defined as c

τ
* =Q* / u

τ
* , where Q* is the mean interfacial mass 

flux. A distinct difference between the clean and solid interfaces can be found. With 

increasing the Marangoni number, the mean concentration approaches to that near the 

solid interface in a similar way to the mean velocity profile shown in Fig. 2.  
The thickness δc of the diffusive sublayer, in which C+ = Scy+  is satisfied 

within deviation of 5 %, is listed in Table 3. Magnaudet and Calmet (2006) showed that 
δc is scaled by δc* / L* ≈ 2.0ReT−3/4Sc−1/2 , where L is the integral length scale and ReT is 

the turbulent Reynolds number based on L and the macroscopic velocity scale uT 
determined by the averaged kinetic energy at y = L. By assuming L+ = 30 and uT+  = 1.8, 

which correspond to the typical diameter of quasi-streamwise vortices close to the 

interface and the velocity scale determined from the interfacial kinetic energy, δc is 
estimated as δc

+ ≈ 3.0Sc−1/2 . This leads to δc+ ≈ 3.0 and 0.3 at Sc = 1.0 and 100, 

respectively. Although the above correlation was developed at a shear-free interface, 

this is found to predict the present result at a clean sheared interface well (see, Table 3). 
With increasing the Marangoni number, however, δc+  becomes thicker, and approaches 

the value at a solid wall. Schwertfirm and Manhart (2007) argued that δc varies as 
δc
+ ∝ Sc−0.29  at a solid wall. In order to show the Schmidt number dependency of δc+ , 

the Schmidt number exponent n, i.e., n = log100 δc
+ (Sc = 100) /δc

+ (Sc = 1.0){ } , is listed in 

Table 3. The exponent is close to –0.5 at clean and slightly contaminated (Case1) 

interfaces, while n ~ –0.3 at highly contaminated interfaces (Cases 2 and 3). These 

results suggest the scaling law of δc is changed from that near a free surface to that near 

a solid surface. This trend is consistent with the change of mass transfer mode discussed 
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in Sec. 3.3. 
 The concentration fluctuation crms at Sc = 100, which is normalized by the 

difference ΔCB between the interfacial and bulk concentrations, is shown in Fig. 7.  

Although a slight bump is observed at the connection plane between the switching and 

LES regions due to rapid change of numerical resolution, it was shown that this does 

not affect the profile inside the DNS region (Hasegawa and Kasagi, 2007). With 

increasing the Marangoni number, the peak value is drastically decreased and the peak 
location y+

p moves further from the interface, i.e., y+
p  = 1.0, 1.2 and 2.2 for clean and 

contaminated interfaces (Cases 1 and 2), respectively. These results qualitatively agree 

with direct observation of concentration fluctuations close to clean and contaminated 

air-water interfaces by Asher and Pankow (1989). They applied the laser-induced 

fluorescence (LIF) technique to observe CO2 concentration fluctuations caused by 

air-water gas transfer, and observed 40 % decrease of the fluorescence fluctuations close 

to a contaminated interface. The concentration fluctuations at high Marangoni numbers 

(Cases 2 and 3) are slightly lower than that near a solid surface. This may be attributed 

to the large tangential velocity fluctuations at a contamintaed interface (see, Fig. 3).  

 

3. 3 Transition of Turbulent Mass Transfer Mode 

The global mass transfer rate Q+  in the water phase is defined by: 

 Q+ =
Q*

u
τ

* C
I

* − C
B

*( ) =
1

ΔCB
+ . (11) 

Here, CI
* and CB

* are the mean concentrations at the interface and the bulk, respectively, 
while ΔCB

* = CI
* − CB

* . The mass transfer rates at Sc = 1.0 and 100 in all cases are 

plotted in Fig. 8. With increasing the Marangoni number, the mass transfer rate is 

drastically decreased, and eventually converges to the value on a solid surface. Surface 

contamination has a profound effect at the high Schmidt number, since the most 

resistance to mass transfer lies in a thinner layer beneath the interface. Specifically, the 

mass transfer rate is decreased by 60 % at Sc = 100, while only 25 % at Sc = 1.0. The 

mass transfer rates in all cases are also listed in Table 2. Jähne et al. (1987) compiled 

experimental data for Sc ~ O(102) at two limiting regimes of clean and highly 

contaminated interfaces. They showed that the mass transfer rate is correlated as 
Q+ = 0.11Scw

−0.5 and 0.073Scw
−0.7  for clean and highly contaminated interfaces, 

respectively. Banerjee et al. (2004) conducted DNS of turbulent mass transfer at a 
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deformable sheared interface without surface contamination. These data are also plotted 

in Fig. 8. As a whole, the present results agree well with the previous data. 

It is known that the Schmidt number dependency of the mass transfer rate at a 

solid surface changes around Sc = 10. Specifically, the DNS data obtained by Na et al. 
(1999) leads to Q+ = 0.0509Scw

−0.546  for Sc up to 10. In contrast, mass transfer 

measurements with electrochemical techniques by Shaw and Hanratty (1977) indicate 

Q+ = 0.0889Scw
−0.704  for 700 < Sc < 37000. Hence, the Schmidt number dependency 

cannot be determined with only two data points available in the present study. 

Nonetheless, the convergence of the mass transfer rate at a highly contaminated 

interface to the value at a solid interface indicates that the turbulent mass transfer 

mechanism switches from that near a free surface to that near a solid surface.  

 The change of the turbulent transfer mode clearly appears in the limiting 

behavior of an eddy diffusivity Ed as shown in Fig. 9. Considering the limiting behavior 
of velocity and concentration fluctuations, the eddy diffusivity varies as Ed

+ ∝ y+2  and 

Ed
+ ∝ y+3  in the immediate vicinity of free and solid interfaces, respectively (Hasegawa 

and Kasagi, 2007). In the case of a clean or slightly contaminated interface (Case 1), 
Ed

+  is proportional to y+2 . With increasing the Marangoni number, the region in which 

Ed
+ ∝ y+2  decreases and lies in the diffusive sublayer, where turbulent transport is not 

significant. Eventually, Ed
+  converges to the data at a solid surface. These results are 

consistent with the mass transfer rates shown in Fig. 8.  
It is known that the regions where Ed

+ ∝ y+3  holds near a solid interface 

always lies in the diffusive sublayer so that Ed is better represented by 
Ed

+ = 0.000463y+3.38  over the concentration boundary layer (Shaw and Haratty, 1977; 

Hasegawa and Kasagi, 2007). The present data at highly contaminated and solid 
interfaces agree with the correlation plotted in Fig. 9. The increase of the slope of Ed

+ , 

i.e., Ed ∝ yn , n > 3 , is also observed near a deformable air-water interface (Lakehal et 

al., 2003). 

 

4. Transition Mechanism of Turbulence Mass Transfer Mode 
 

4. 1 One-dimensional Advection-diffusion Equation 

Due to a thin concentration boundary layer at the high Schmidt number, the 

transport equation (3) of the solute concentration can be simplified to (McCready and 
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Hanratty, 1984): 

 
∂c
∂t +

+ v+
∂c
∂y

=
1
Sc

∂2c
∂y+2

. (12) 

Since the interfacial shear stress governs the mass transfer in the specific situation being 

considered, the velocity and the length are non-dimensionalized by the shear units on 
the water side, while the concentration is normalized by ΔCB

* .  

In general, the normal velocity fluctuation v’ close to an interface can be 

represented by Taylor series expansion about the interface as:  

 
 

v+ y+ ,t +( ) = ∂v+

∂y+
⎛
⎝⎜

⎞
⎠⎟ y+ =0

y+ +
1
2

∂2v+

∂y+2
⎛
⎝⎜

⎞
⎠⎟ y+ =0

y+2 + . (13) 

Truncating to the first term, v’ inside a concentration boundary layer at a free surface 

can be expressed by the surface divergence β as v+ y+ ,t +( ) = −β + t +( )y+ . In contrast, β 

should be zero at a solid surface due to a no-slip condition, so that v’ varies as v+ ∝ y+2 . 

It should be noted that the fundamental difference between free and solid surfaces in 

terms of the mass transfer stems from the difference in the asymptotic behavior of v’ 

toward the interface (Hasegawa and Kasagi, 2007). 

Hasegawa and Kasagi (2005, 2008) considered a single sinusoidal wave for β, 

i.e., β + t( ) = 2β0
+ cos ω0

+t +( ) . By introducing a new coordinate Y = Scω0
+ y+  and a 

time-scale T =ω0
+t + , the Schmidt number disappears from Eq. (12) and the only 

remaining parameter is β0 /ω0 . 

 ∂c
∂T

− 2 β0
+

ω0
+ cos T( ) ⋅Y ⋅

∂c
∂Y

=
∂2c
∂Y 2 . (14) 

Based on an order-of-magnitude estimate, it was shown that the fluctuating surface 
divergence contributes to the mass transfer only when β0 /ω0 >> 1, and if this is the 

case, the local mass transfer rate q+ is determined by the balance between the advection 

and diffusion terms in Eq. (14). As a result, q+ can be estimated by the following Chan 

and Scriven’s stagnation flow model (1970). 

 q+ =
q*

uτ
*ΔCB

* =
2β +

π ⋅Sc
. (15) 

In Fig. 10, the contributions of the local surface divergence β+ to the local 

mass transfer rate q+ at clean and contaminated interfaces are shown. The contour value 
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represents the product of the local mass flux q+ and the joint probability density 

function of β+ and q+, so that the integral of the contour values over the whole β+-q+ 

plane is identical to the total interfacial mass flux. The data at a clean interface is quoted 

from our previous work (Hasegawa and Kasagi, 2008). The prediction by Eq. (15) and 

the global mass transfer rate Q+ at a solid surface are depicted as solid and dotted lines, 

respectively. At a clean interface, q+ agrees well with Eq. (15). In contrast, with 

increasing Ma, the correlation between q+ and β+  rapidly deteriorates, and eventually, 

the contour converges around the data at a solid surface in Cases 2 and 3. These results 

indicate that the vanishing contribution of the surface divergence to the mass transfer is 

a primary reason for the transition of the mass transfer mode. When the contribution of 

the surface divergence is negligible, the second term of Eq. (13) becomes dominant in 

the mass transfer. This regime is essentially the same as a solid surface in terms of the 

mass transfer. 

 

4. 2 Surface Divergence Model 

McCready et al. (1986) carried out numerical simulation of a two-dimensional 

advection-diffusion equation close to a free surface. They concluded that the global 

mass transfer rate Q is correlated with the surface divergence β as:  

 Q+ = A
βrms

+

Sc
. (16) 

Here, A ~ O(1) is a dimensionless proportional constant. For a sheared interface, Eq. 

(16) with A = 0.45 appears to predict the mass transfer rate reasonably (Banerjee et al., 

2004; Turney et al., 2005). Hasegawa and Kasagi (2008) numerically solved Eq. (14) 

and obtained A = 0.4. In Fig. 11, the mass transfer rates obtained in the present study are 

plotted with open symbols as a function of βrms
+ . Eq. (16) with A = 0.4 is also 

depicted as a solid line. At a clean interface, the mass transfer rate shows good 

agreement with Eq. (16). At a slightly contaminated interface (Case 1), however, the 

mass transfer rate rapidly decreases and deviates from Eq. (16). For highly 

contaminated interfaces (Cases 2 and 3), the mass transfer rate is almost independent of 

the surface divergence and converges to the data at the solid interface. These facts 

indicate that the original surface divergence model (16) is not applicable to a 

contaminated interface considered here.  
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 As discussed in the previous section, the theoretical support of the surface 

divergence model (16) comes from the Chan and Scriven’s stagnation flow model (15), 

which relates the local mass transfer rate to the surface divergence. With increasing Ma, 

however, the local mass transfer rate is less correlated to the surface divergence as 

shown in Figs. 10 (a-d). Consequently, the surface divergence model fails at a 

contaminated interface. 

Hasegawa and Kasagi (2005, 2008) analyzed Eq. (12), and showed that the 
solution undergoes sudden transition around β0 /ω0 ~ 1. Specifically, when β0 /ω0  

>> 1, the correlation between the local mass transfer rate and the surface divergence is 

kept high, and the surface divergence model (16) holds fairly well. In contrast, when 
β0 /ω0  << 1, the correlation between the local mass flux and the surface divergence 

drastically deteriorates, and therefore the mass transfer rate rapidly decreases. These 

results indicate that in order for the fluctuating surface divergence to contribute to the 
mass transfer, its frequency ω0  need to be sufficiently smaller than its intensity β0 . 

Hereafter, we will refer to the surface divergence contributing to the mass transfer as the 
effective surface divergence. Note that 1 / β0  represent a transient response time-scale 

of the concentration boundary layer, while 1 /ω0  is the renewal time-scale (Hasegawa 

and Kasagi, 2005, 2008). Therefore, β0 /ω0  is a dimensionless parameter, which 

characterizes the concentration field close to an interface. 

In view of these facts, we calculate the ratio between typical intensity and 

frequency of the fluctuating surface divergence at clean and contaminated interfaces. 
βrms  is chosen for the typical intensity of the fluctuating surface divergence. For the 

typical frequency, we employ the mean frequency ωm  (McCready et al., 1986) given 

by the following equation:  

 ωm =
ω 'Wβ ω '( )dω '

0

∞

∫
Wβ ω '( )dω '

0

∞

∫
. (17) 

The ratio of βrms and ωm  is listed in Table 2. Since lower-frequency fluctuations of the 

surface divergence are damped due to surface contamination (see, Fig. 5), ωm  is 

increased with increasing Ma, i.e., ωm
+  = 0.22, 0.36, 0.57 and 1.4 in Clean and Cases 

1-3, respectively. In contrast, βrms  vanishes with increasing Ma. As a result, βrms /ωm  

drastically decreases with increasing Ma. These results suggest that the surface 

divergence at highly contaminated interfaces is no longer effective in the mass transfer. 
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This is consistent with the deterioration of the correlation between β+ on q+ in Fig. 10. 

The above results stress the importance of quantifying the effective surface 

divergence for prediction of the mass transfer rate at a contaminated interface. 

Hasegawa and Kasagi (2005) developed a method to extract the effective surface 

divergence from time-series data of the surface divergence. In the present study, we 

propose another simpler method to estimate the effective surface divergence from a 

frequency spectrum. In general, the energy of the surface divergence contained below a 

certain frequency ω  can be estimated as Wβ ω '( )dω '
0

ω

∫ . Hence, in order for the 

surface divergence to contribute to the mass transfer, its frequency should be smaller 
than the following critical frequency ω c : 

 ω c = B
−1 Wβ ω '( )dω '

0

ωc∫ . (18) 

Here, B ~ O(1) is the dimensionless proportional constant. It is found that B = 

0.25 provides reasonable prediction in the present study. We estimate the effective 
surface divergence βE from the energy which lies below the critical frequencyω c  as:  

 βE = Wβ ω '( )dω '
0

ωc∫ . (19) 

Since ω c
+  decreases with increasing Ma as ω c

+  = 0.19, 0.10, 0.0067 and 0, βE 

decreases as βE = 0.047, 0.023, 0.0010 and 0 for clean and contaminated (Cases 1-3) 

interfaces. The mass transfer rates at clean and contaminated interfaces are replotted as 
a function of βE  with solid symbols in Fig. 11. It is found that the mass transfer rate 

for clean and slightly contaminated (Case 1) interfaces can be predicted fairly well with 

Eq. (16). At highly contaminated interfaces (Cases 2 and 3), βE are too small to explain 

the present data. This means that the interface is more like a solid interface in terms of 

the mass transfer, so that the mass transfer rate converges to the data at a solid surface. 

 

 5. Conclusions 
Numerical simulations of high Schmidt number turbulent mass transfer across 

clean, contaminated and solid interfaces were systematically carried out in order to 

clarify effects of an interfacial dynamical condition on the interfacial mass transfer. By 

applying a hybrid DNS/LES scheme to the high Schmidt number concentration field, 

we could numerically reproduce a transition process of turbulent mass transfer mode 
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from a free surface to a solid surface for the first time. At a clean interface, the surface 

divergence plays a critical role in the mass transfer. In contrast, at a contaminated 

interface, the correlation between the local mass transfer rate and the surface divergence 

drastically deteriorates, and eventually the mass transfer rate falls down to the value at a 

solid surface. The transition of the turbulent mass transfer mode can be explained by a 

one-dimensional advection-diffusion equation. Specifically, the fluctuating surface 

divergence contributes to the mass transfer only when its frequency is sufficiently lower 

than its intensity. In the present study, we developed a method to extract the effective 

surface divergence from a frequency spectrum. It was shown that the mass transfer rate 

at a clean or slightly contaminated interface is correlated to the effective surface 

divergence. At a highly contaminated interface, the surface divergence fluctuations at 

low frequencies are drastically damped, so that the effective surface divergence 

becomes vanishingly small. Consequently, the turbulent mass transfer mode switches to 

that near a solid surface. We showed that the ratio of the intensity and the mean 

frequency of the fluctuating surface divergence can be used as a criterion for the 

transition of the mass transfer mode. 

 The present results shed light on the importance of frequency range of the 

surface divergence, as well as its intensity in predicting the interfacial turbulent mass 

transfer. How to predict the frequency spectrum of the surface divergence at a 

contaminated interface is still open question. Furthermore, in a real air-water interface, 

onset of capillary-small gravity waves should influence turbulent structures close to an 

interface. Clarification of the surface deformation effects on the frequency spectrum of 

the surface divergence remains to be future work. 
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Figure Captions 
 

Fig. 1 a) Computational domain and coordinate system, and  

b) grid system in hybrid DNS/LES 

Fig. 2 Mean velocity in the water phase relative to the interfacial velocity. 

Fig. 3 Limiting behavior of velocity fluctuations close to the interface. 

Fig. 4 Decomposition of the interfacial velocity vector into  

a) solenoidal and b) irrotational components. 

Fig. 5 Frequency spectra of the surface divergence. 

Fig. 6 Mean concentration profiles. 

Fig. 7 Concentration fluctuations. 

Fig. 8 Mass transfer rates as a function of the Schmidt number. 

Fig. 9 Limiting behavior of the eddy diffusivity close to the interface at Sc = 100. 

Fig. 10 Contribution of the surface divergence to the interfacial mass flux at Sc = 100. 

Fig. 11 Mass transfer rates as a function of  
βrms : open symbols and βErms : solid symbols. 
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  Region kx, ky or Ny, kz Δx+ Δy+ Δz+ 

Velocity (air and 

water phases) & 

Scalar (Scw = 1.0) 

DNS 0 < y+ < 150 64, 129, 64 18.4 0.01 ~ 1.23 7.2 

DNS 0 < y+ < 11.3 192, 34, 192 6.1 0.01 ~ 0.62 2.4 

Switching 11.3< y+ < 21.6 192, 15, 192 6.1 0.66 ~ 0.85 2.4 
Scalar  

(Scw = 100) 
LES 21.6 < y+ < 150 64, 144, 64 18.4 0.01 ~ 0.79 7.2 

Table 1 Number of modes, number of grid points and grid spacings. 
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 Ma We 

kSL 

(kSL / 

kTotal) 

kIR 

(kIR / 

kTotal) 

Kw
+ 

Scw = 1.0 
Kw

+ 

Scw = 100 βrms/ωm 

Clean 0 9.0 x 10-3 
4. 9 

(0.85) 

0. 69 

(0.15) 

6.8 x 10-2 9.6 x 10-3 0.27 

Case 1 1.0 x 10-3 9.0 x 10-3 
3.9 

(0.90) 

0. 43 

(0.10) 

5.9 x 10-2 5.2 x 10-3 0.15 

Case 2 1.0 x 10-2 9.0 x 10-3 
3.5 

(0.95) 

0. 18 

(0.05) 

5.4 x 10-2 3.9 x 10-3 4.0 x 10-2 

Case 3 1.0 x 10-1 9.0 x 10-3 
3.6 

(0.992) 

0. 03 

(0.008) 

5.1 x 10-2 3.6 x 10-3 3.7 x 10-3 

Solid - - 0 0 5.5 x 10-2 3.4 x 10-3 - 

 

 

Table 2 Computational conditions, interfacial kinetic energy kSL and kIR held by 

solenoidal and irrotational motions, their relative contributions to total kinetic energy 

kTotal = kSL + kIR, mass transfer rate Kw, and time-scale ratio βrms/ωm. 
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 Clean Case 1 Case 2 Case 3 Solid 
δc
+ Sc = 1.0( )  2.8 4.4 6.18 6.18 6.69 

δc
+ Sc = 100( )  0.25 0.49 1.44 1.44 1.69 

n =
1
2
log

δc
+ Sc = 100( )

δc
+ Sc = 1.0( )

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
 -0.52 -0.47 -0.32 -0.32 -0.30 

 

 

Table 3 Thickness δc of the diffusive sublayer and Schmidt number exponent n. 
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Fig. 6      Mean concentration profiles.
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Fig. 8   Mass transfer rates as a function of the Schmidt number.
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Fig. 11   Mass transfer rates as a function of 
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