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Abstract - Numerical simulation of a coupled air-water turbulent flow and associated 

high Schmidt number mass transfer is carried out via a hybrid scheme of direct and 

large-eddy simulations (DNS/LES). Due to the large density ratio of water and air, the 

dynamical coupling between the air and water turbulent flows is found to be weak at the 

low wind velocity considered here. Instead, the self-sustaining mechanisms due to the 

mean shear, which are similar to those near a solid wall, are dominant even close to the 

air-water interface. The spatio-temporal correlations between the local mass transfer 

rate and velocity fluctuations around the interface reveal that impingement of fresh 

water on the interface governs the interfacial mass transfer. It is found that the local 

mass transfer rate can be predicted from the surface divergence by the Chan and 

Scriven’s stagnation flow model. This explains why the mass transfer rate is well 

correlated with the intensity of the surface divergence under a variety of flow 

conditions. 
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NOMENCLATURE 

A dimensionless proportional constant in the surface divergence model 

c concentration 

C mean concentration  

Cc Smagorinsky coefficient in the Dynamic Smagorinsky Model 

D molecular diffusivity  

K global mass transfer rate 

k local mass transfer rate 

kx, ky, kz wavenumbers in the streamwise, interface-normal and spanwise directions 

kx_LES, kz_LES maximum wavenumbers of Fourier modes in the streamwise and spanwise 

directions in LES region 

p pressure 

Q mean mass flux at the interface 

q local mass flux at the interface 

Rab correlation coefficient between variables a and b 

Re  Reynolds number based on the friction velocity u  and depth  

N number of grid points 

Sc Schmidt number 

t time 

u, v, w velocity components in the x, y, and z directions 

u  friction velocity 

x, y, z streamwise, interface-normal and spanwise directions 

 

Greek 

  dimensionless Ostwald solubility 

 surface divergence 

C difference between concentrations at the top and bottom boundaries 

CB difference between the bulk concentrations in air and water 
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t time step 

x, y, z  grid spacings in the streamwise, interface-normal and spanwise directions 

 depth of computational domain 

B thickness of the Batchelor sublayer 

 kinematic viscosity 

 fluid density 

s  surface renewal time 

 frequency 

i subgrid-scale mass flux in the i-th direction 

 

Superscript 

( )
*
 dimensional value 

( )
 +

 value non-dimensionalized by the shear unit 

( )’ fluctuating component 

( )  mean component 

Subscript 

( )a value in air 

( )B value in bulk 

( )I value at the interface 

( )rms root-mean-square value 

( )w value in water 

 

Keywords: Turbulence, Air-water interface, Mass transfer, Schmidt number, surface 

divergence 
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1. INTRODUCTION 

 Turbulent mass transfer across an air-water interface plays a critical role in 

geophysical and industrial processes. The basic problem in predicting the interfacial 

mass transfer is to estimate the mass transfer rate K* by using statistical properties of the 

velocity fields. Here, the mass transfer rate is defined as: 

 K * =
Q*

μ*
=

Q*

CBa
* CBw

*( )
, (1) 

where, Q, μ, C
Ba

 and C
Bw

 are the mean interfacial mass flux, the chemical potential 

difference of a dissolved gas between air and water, and the bulk concentrations in the 

two phases, respectively. A value with an asterisk represents a dimensional value 

throughout this article, while  is the dimensionless Ostwald solubility, which is defined 

as the ratio of the equilibrium bulk concentrations in water and air = CBw
* /CBa

* . 

 The total mass transfer rate K* is represented by the respective mass transfer 

rates in the air and water phases, Ka
*  and Kw

* , as: 

 K *
=

K *
aK

*
w

K *
a + K *

w

. (2) 

In general, the molecular diffusivity in air Da
*  is much larger than that in water Dw

* , 

so that, except for highly soluble (  >> O(1)) or reactive gases, the most mass transfer 

resistance exists on the water side, i.e., Kw
*
<< Ka

*  or K * ~ Kw
* . Furthermore, since 

the Schmidt number Sc, which is defined by the ratio between the kinematic viscosity * 

and the molecular diffusivity D*, becomes extremely high Scw = w
* / Dw

* ~ O(103) in 

water, a thin concentration boundary layer (10 - 100 μm) is formed just beneath the 

interface [1]. Therefore, it is particularly important to understand the microscopic 

transport mechanism inside this thin concentration boundary layer, which should be 

controlled by complex interaction between bulk turbulence, a free surface and waves. 

 However, due to difficulties in the measurement of velocity and concentration 

close to a moving interface, most efforts have been directed toward developing a 

correlation equation which relates the gas transfer rate to the macroscopic flow 

parameters. For example, empirical relationships between the mass transfer rate and 
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wind velocity have been widely used to estimate the gas exchange across the sea surface 

in the field of geoscience [2]. In chemical engineering, an eddy-structure based model, 

i.e., the surface renewal model [3], was proposed. In this model, the mass transfer rate is 

estimated from the surface renewal time s
*  as: 

  Kw
* Dw

*

s
*

. (3) 

Different approaches have been proposed to determine the surface renewal time, e.g., 

the large-eddy model [4], the small-eddy model [5, 6] and the bursting-frequency model 

[7, 8]. However, they do not have wide applicability, since they employ parameters that 

depend on a particular flow condition or turbulence properties in the bulk region away 

from the interface. For example, it is well known that the presence of surfactants causes 

strong attenuation of near-surface turbulence and also a drastic decease in the mass 

transfer rate [9]; this is quite difficult to predict only from bulk information. 

In order to develop a general and robust model, a local parameter which 

governs the transport processes in the vicinity of the interface should be properly 

implemented into the model. Chan and Scriven [10] first shed light on a role of 

irrotational stagnation flow in the gas exchange across a free surface. They showed that 

the transport equation at a stagnation point reduces to: 

 
c

t
+ v

c

y
=
1

Sc

2c

y2
, (4) 

where y is the distance from the interface and v is the velocity in the y direction. Since 

the concentration boundary layer is generally thinner than the viscous sublayer, v can be 

approximated by the first term in a Taylor series as: 

 

  

v y( ) v 0( ) ~
u

x
+

w

z
y=0

y = y . (5) 

Here,  is called the surface divergence. 

Recently, particle image velocimetry (PIV) techniques have been successfully 

applied to the measurement of interfacial velocity fluctuations by several researchers. 

Their results indicate a possibility that the statistical properties of surface divergence 
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can be related to the mass transfer rate regardless of a mode of turbulence generation 

[11-12], surface contamination [13] and interface deformation [14].  

In the meantime, numerical simulations [15-17] have been performed to 

clarify the microscopic transport mechanisms at high Schmidt numbers. Basically, their 

data support the hypothesis that the surface divergence is the key parameter which 

governs the interfacial mass transfer. However, no literature discusses the quantitative 

relationship between the local mass transfer rate and the surface divergence, which is of 

critical importance to verify the surface divergence model. Furthermore, in the presence 

of the wind shear, which is of particular interest in the preset study, the interfacial shear 

stress determines turbulence structures in the water phase. Hence, the air-water coupling 

effects on the mass transfer must be clarified. 

 Main issues in the present study are as follows: 

1) How the local interfacial mass transfer rate can be estimated when the surface 

divergence at a point of interest is specified ? 

2) What kind of conditions should be satisfied in order for the surface divergence to 

contribute to the mass transfer ? 

3) How the interaction between air and water turbulent flows influences the local 

interfacial mass transfer rate ? 

In order to calculate high Schmidt number concentration field, we employ a hybrid 

DNS/LES scheme [9, 18], in which DNS with fine mesh is applied inside the thin 

concentration boundary layer, while LES with coarse mesh in the outer layer. 

 We will proceed as follows. In Sec. 2, we describe a computational model and 

numerical procedures of the hybrid DNS/LES scheme. In Sec. 3, we show fundamental 

concentration statistics in the air and water phases. Then, we study the interfacial mass 

transfer mechanisms with particular focus on air-water coupling effects. In Sec. 4, we 

revisit a one-dimensional advection-diffusion equation (4), and derive quantitative 

relationship between the local mass transfer rate and the surface divergence. Finally, we 

summarize the present study in Sec. 5. 
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2. COMPUTATIONAL MODEL 

2. 1. Numerical conditions 

 We consider a counter-current air-water flow driven by constant pressure 

gradient. The flow geometry and the coordinate system are shown in Fig. 1, where x, y 

and z are the streamwise, interface-normal and spanwise directions, respectively. The 

Reynolds numbers based on the interfacial friction velocity u*  and the depth * were set 

to be Re w = Re a = 150. The density ratio of water and air is *
w / 

*
a = 841.  

 The governing equations are the incompressible Navier-Stokes and the 

continuity equations, 

 
ui
t
+ uj

ui
x j

=
p

xi
+
1

Re

2ui
x j x j

, (6) 

 
ui
xi

= 0 , (7) 

where, the velocity ui and the coordinate xi are non-dimensionalized by u*  and * in 

each phase. A pseudo-spectral method with Fourier series in the x and z directions and a 

Chebyshev polynomials expansion in the y direction was applied. Details of the 

numerical procedures are also described in Hasegawa and Kasagi [9, 18]. Numbers of 

modes and grid spacings are listed in Table 1.  

 Since we focus on quantitative relationship between the local mass transfer 

rate and the surface divergence, the interface is assumed to be always flat for simplicity. 

Hence, the resultant coupling conditions at the air-water interface are the continuity of 

velocity and tangential shear stresses. They are rewritten in dimensionless forms as: 

 uia =
a

w

uiw  (i = 1 or 3), (8) 

 u2a = u2w = 0 , (9) 

 
1

Re a

uia
x2a

=
1

Re w

uiw
x2w

 (i = 1 or 3). (10) 

 Once the velocity field is calculated at each time step, the concentration field 
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of a dissolved gas is obtained by integrating the following transport equation. 

 
c

t
+ uj

c

x j
=

1

Re Sc

2c

x j x j
. (11) 

The dimensionless concentrations in the air and water phases are defined as: 

 ca =
ca
* cwbottom

*

catop
* cwbottom

*
, (12) 

 cw =
cw
* cwbottom

*

catop
* cwbottom

*
. (13) 

Here, ca
*  is the equivalent molar concentration in water at equilibrium, when the 

molar concentration of a gaseous solute in air is ca
* . In Eqs. (12) and (13), catop

*
 and 

cwbottom
*  are the molar concentrations at the outer boundaries in air and water phases, 

respectively. 

 At the interface, the following Henry’s law and the continuity of mass flux are 

employed so that 

 ca = cw , (14) 

 
ca
ya

=
ScaRe a

ScwRe w

a

w

cw
yw

. (15) 

In this work,  is assumed 1.0, which approximately corresponds to the solubility of 

carbon dioxide at the standard temperature and pressure.  

 The Schmidt numbers used in this study are 1.0 and 100 in water, while kept 

constant at Sca = 1.0 in air. DNS is applied to the concentration field at Scw = 1.0 in the 

whole domain by using a pseudo-spectral method. For the high Schmidt number of 100, 

the hybrid DNS/LES scheme is employed. 

 

2. 2. Hybrid DNS/LES scheme 

 In the hybrid DNS/LES scheme, the computational domain in water is divided 

into three regions, i.e., DNS, switching and LES regions, as shown in Fig. 1 (b). The 

depth of the DNS region is determined so that more than 95 % of the mean 

concentration change is resolved by DNS. In order to connect the DNS and LES regions 
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smoothly, we provide the switching region between them.  

 For spatial discretization, Fourier series are used in the x and z directions, and 

the finite volume method is employed in the y direction. In the DNS and switching 

regions, Fourier modes up to 8 times that for the velocity field are employed in the x 

and z directions, whereas in the LES region, the same grid system as that for the 

velocity field is used. 

 In the present study, the grid resolution in the air phase is the same as that for 

the velocity field in the water phase (or the concentration field in the LES region). The 

concentration fields in the air and water phases at low wavenumbers 

_ _and
x x LES z z LES
k k k k  are coupled through the Henry’s law and the continuity of 

mass flux given by Eqs. (14) and (15), respectively. Here, _x LES
k  and _z LES

k  are the 

maximum wavenumbers in x and z directions in the LES region. For higher 

wavenumbers,    c = 0  is imposed at the interface.  

 The filtered transport equation for concentration c can be given as: 

 
( )2

1 c j
j

j j j j

Ac c c
u

t x Re Sc x x x
+ = . (16) 

where j  is the subgrid-scale mass flux. For the subgrid model, we employed the 

Dynamic Smagorinsky Model (DSM): 

 
2

2j c ij

j

c
C S

x
= . (17) 

where  and ijS  denote the local grid width and the strain rate tensor, respectively. 

The unknown coefficient Cc is calculated using the Germano identity with the 

double-filtering procedure [19]. In Eq. (16), Ac  is a function of the distance from the 

interface yw and acts as a switching function between DNS and LES. In the DNS and 

LES regions, Ac  takes two limiting values of 0 and 1, respectively. In the switching 

region, Ac  is linearly increased from 0 to 1 with the distance from the interface.  

In order to verify the present calculation, we run four computations with 

different depths of the DNS region (Cases 1 and 2) and different grid resolutions for the 

concentration and velocity fields (Cases 1, 3 and 4). All computational conditions are 
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listed in Table 1. The verification procedures are essentially the same as those in 

Hasegawa and Kasagi [18]. 

 

3. HIGH SCHMIDT NUMBER EFFECTS ON CONCENTRATION FIELD 

3. 1. Statistics of concentration field 

 The flow statistics under the present condition have been already reported by 

Lombardi et al. [20]. They also mentioned that 20 % of quasi-streamwise vortices 

appeared to be coupled across the interface. However, the air-water coupling was found 

to be too weak for the detection technique they used, so that the presence of the 

coupling and its effects on the interfacial mass transfer still remain open questions. In 

this section, we focus on the coupling effects on the concentration statistics and the mas 

transfer mechanisms. 

 The mean concentration profile in the air and water phases is presented in Fig. 

2. Due to the large density ratio in Eq. (15), the most mass transfer resistance exists in 

the water phase, even though the Schmidt numbers in both phases are the same, i.e., Scw 

= Sca = 1.0. With increasing Scw from 1 to 100, the resistance in water is more 

pronounced. Namely, the interfacial mean concentrations at Scw = 1.0 and 100 are CI = 

0.964 and 0.995, respectively. The boundaries between the DNS, switching and LES 

regions in Case 1 are also depicted in Fig. 2. By inserting the switching region, we 

obtain the smooth profile across the boundaries.  

 The concentration fluctuations close to the interface in the water and air 

phases are shown in Figs. 3 (a) and (b), respectively. Since the most concentration 

change occurs in the water phase, the concentration fluctuation crms(y = 0) at the 

interface is negligible for the aqueous concentration boundary layer. With increasing the 

Schmidt number in water, the interfacial concentration fluctuation is further decreased. 

Specifically, crms(y = 0) = 0.54 x 10
-2

 and 0.73 x 10
-3

 at Scw = 1.0 and 100, respectively. 

The peak value of the concentration fluctuation normalized by the difference CBw 

between the interfacial concentration and bulk concentrations in water is about 0.25 at 
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Scw = 100, which agrees well with the LES data of Calmet and Magnaudet [16].  

 In the air phase, the concentration fluctuation has its peak at the interface (see, 

in Fig. 3 (b)). This indicates that the concentration fluctuation generated in water is 

transported across the interface by molecular diffusion as will be discussed in Sec. 3. 2. 

The generation of concentration fluctuation in air is insignificant because the mean 

concentration gradient is much smaller than that in water. 

 In Figs. 2 and 3, the results in Cases 1-4 are plotted. It is found that the 

dependency on the grid resolution and the depth of the DNS region is quite weak. 

Specifically, the difference in the mass transfer rate K is less than 2 %. Hanratty [21] 

complied experimental data under a wide range of the Reynolds number and concluded 

that K can be well expressed in the simple form as K +
= K * / u w

*
= BScw

1/2 , where the 

proportional constant B is around 0.12. Jähne et al. [22] obtained B = 0.11 from 

experiments in circular and linear wind/wave tunnels with various tracers. The value of 

B obtained in the present calculation is 0.097, which agrees fairly well with the 

experimental data. The slight underestimate in the present study might be attributed to 

the neglect of surface waves, since DNS data for a deformable sheared interface [15] 

results in a slightly higher value of B = 0.11. We should also note that the effects of the 

bottom wall are also included in the experimental data.  

We also confirmed that the one-dimensional spectra of concentration 

fluctuation in the x and z directions show good agreement over the whole range of 

wavenumbers in all cases. The concentration spectra close to free and solid surfaces at 

different resolutions were reported in Hasegawa and Kasagi [18]. In order to clarify the 

effects of grid refinement in the x and z directions, we performed additional calculation 

without horizontal gird refinement. In this case, the concentration fluctuations at high 

wavenumbers significantly accumulate so that the concentration fluctuation is 

overestimated by 5 % around the peak location. From these results, we conclude that the 

grid-resolution and the depth of the DNS region used in Case 1 are necessary and 

sufficient not only to obtain the concentration statistics, but also to study the local mass 
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transfer mechanisms. Hereafter, the results obtained in Case 1 is shown. 

 

3. 2. Spatio-temporal correlation between local mass transfer rate and velocity 

components 

 In order to clarify air-water coupling effects on the interfacial mass transfer, 

the following spatio-temporal correlation coefficients between the local mass transfer 

rate k, and velocity/concentration fluctuations around the interface are calculated: 

 

  

R
k

y, t( ) =
k ' x, z,t( ) ' x, y, z,t + t( )

k
rms rms

, (18) 

where,  

 k =
q*

u w
* C*

=
1

Scw Re w

cw
yw yw =0

, (19) 

and  in Eq. (18) represents a velocity component or concentration. In calculating the 

spatio-tempral correlation, x is directed to the air flow direction, while y is distance 

from the interface defined to be positive in air and negative in water. The results at Scw 

= 1.0 and 100 are shown in Figs. 4 (a) and (b), respectively. 

 In general, the spatio-temporal correlations have larger absolute values on the 

water side. Specifically, upwelling of low concentration fluid leads to high mass transfer 

rate (Rkv > 0, Rkc < 0). With increasing the Schmidt number from 1.0 to 100, the absolute 

values of Rku and Rkc are decreased away from the interface, i.e., yw
+
 = 7.2. In contrast, 

Rkv is kept high, i.e., Rkv ~ 0.6 even at the high Schmidt number. This suggests that the 

normal velocity fluctuation plays a critical role in controlling the local mass flux. 

 In the air phase, Rkc shows a considerable value close to the interface. 

Specifically, negative concentration fluctuation (Rkc < 0) is associated with high 

interfacial mass flux. It is diffused inside the air phase with time. This result indicates 

that impingement of low concentration water on the interface governs the concentration 

fluctuation in air. This is consistent with the fact that the concentration fluctuation in the 

air phase has a peak at the interface as shown in Fig. 3 (b). In contrast, the correlation 



 

 13 

between k and velocity components are generally quite small. This indicates that the 

velocity fluctuation in the air phase hardly contributes to the interfacial mass transfer. 

This agrees with wind-tunnel measurements by Komori et al. [23], where the frequency 

of the appearance of organized turbulent motions in water is found to be much lower 

than that in air at the low wind speed considered here. Hanratty [21] estimated the 

normal velocity fluctuations in water induced by the fluctuating wind shear as: 

 lim
yw 0

vw
+( )

rms
= z

+( )
rms

a

w

Re a

Re w a
+

a
+
yw
+

, (20) 

Here, a
+  and a

+  is typical diameter and frequency of quasi-streamwise vortices in 

the air phase. z
+

 is the spanwise interfacial shear stress associated with the 

quasi-streamwseise vortices. Assuming that a
+
= 20 , a

+
= 0.1and z

+( )
rms

= 0.1 , Eq. 

(20) leads to lim
yw 0

vw
+( )

rms
~ 0.002yw

+
. This value is at most 3 % of the present numerical 

result. Hence, we conclude that the self-sustaining mechanisms of turbulence due to the 

mean shear, which are similar to those near a solid wall, are dominant in water. 

Hereafter, we focus on turbulent transports in the water phase. 

 

3. 3. Visualization of velocity and concentration fields near interface 

 The instantaneous distributions of the local mass transfer rate k at Scw = 1.0 

and 100 under the identical flow field are shown in Figs. 5 (a) and (b), respectively. 

Low mass-flux regions have streaky structures. They become finer with the Schmidt 

number increased. On the other hand, high mass-flux regions are characterized by 

spotty structures. These structures are almost independent of the Schmidt number and 

even more highlighted at Scw = 100. 

 In order to investigate the relationship between the high mass-flux regions 

and turbulent structures, the instantaneous velocity vectors and concentration 

fluctuation in the y-z plane are presented in Fig. 6. The local mass transfer rate k, the 

surface divergence  and the fluctuation component of streamwise interfacial shear 

stress ’x are also plotted. It is observed that the local mass transfer rate correlates with 
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the surface divergence fairly well even at the high Schmidt number. In contrast, the 

local shear stress is poorly correlated with any of them. This is consistent with high R
kv
 

in Fig. 4 (b). 

 The high surface-divergence region is caused by upwelling flow associated 

with the streamwise vortex beneath the interface (See, Fig. 6 (b)). This upwelling flow 

carries fresh fluid from the LES region to the DNS region and brings about a large 

interfacial mass flux, so the adequate coupling between the concentration fields 

calculated by DNS and LES is important.  

 

4. INTERFACIAL MASS TRANSFER MODEL 

4. 1. One-dimensional advection-diffusion equation 

 In order to investigate the quantitative relationship between the local mass 

transfer rate and the surface divergence, a one-dimensional advection-diffusion equation 

in the water phase is revisited. Chan and Scriven [10] showed that the transport equation 

in an irrotational stagnation flow reduces without approximation to: 

 

  

c

t
+

+
t( ) y

+ c

y
+
=

1

Sc

2
c

y
+2

, (21) 

where the velocity and the length are non-dimensionalized by the shear units on the 

water side. The concentration is normalized by the concentration difference CBw

*  

between the interface and the bulk in water. Following McCready et al. [24], the 

fluctuating surface divergence is modelled as: 

 
  

+
t( ) = 2

0

+
cos

0

+
t
+( ) , (22) 

where 
  

0

+
=

rms

+
= v

+
/ y

+

y
+
=0

( )
2

. 

 If we introduce a new coordinate Y = Sc 0
+ y+  and a time-scale T = 0

+t + , 

the Schmidt number disappears from Eq. (21), and the only remaining parameter is 

0
+ / 0

+  as follows: 
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c

T
2 0

+

0
+
cos T( ) Y

c

Y
=

2c

Y 2
. (23) 

Since the concentration profile obtained by Eq. (23) continues to grow, following 

Brumley and Jirka [25], we assume a length-scale L+, beyond which turbulence always 

completely mixes the dissolved gas. Specifically, the tail of the concentration boundary 

layer is instantaneously chopped off in the region of y+ > L+ , (i.e., Y > L = Sc 0
+ L+ ) 

whenever the normal velocity fluctuation switches from downwelling to upwelling.  

 In the above model, the Schmidt number appears only in the distance 

L = Sc 0
+ L+  between the interface and the outer boundary. By assuming L+ = 2 , and 

0
+
= 0.1 , which represents the thickness of the viscous sublayer and the typical 

frequency of the surface divergence, respectively, we find that L changes within the 

range of O 1( ) < L <O 10( )  when Sc is increased from 1.0 to 100. Fortunately, the 

influence of L on the solution of Eq. (23) is found quite weak. Therefore, we fix L = 50 

and focus on the effect of 0
+ / 0

+  on the solution. 

The mass transfer rate Kw
+  and the correlation coefficient Rcv at the interface 

obtained from Eq. (23) are presented in Fig. 7. It is found that the solution of Eq. (23) 

undergoes a sudden transition around 0
+ / 0

+
= 1 . Specifically, when 0

+ / 0
+
> 10 , 

Rcv is kept high and Kw
+  is proportional to 0

+ / Sc . In contrast, when 0
+ / 0

+
< 1 , 

both Kw
+  and Rcv are decreased drastically. In the following subsection, we will look 

into the transport mechanism in the two typical regimes by focusing on two time-scales 

characterizing the concentration filed near the interface. 

 

4. 2. Response and renewal time scales 

 According to the Chan and Scriven’s result [10] for steady upwelling flow, i.e., 

+ = const. and positive (see, Fig. 8 (a)), the transient response time of the concentration 

field scales with 1/ + regardless of the Schmidt number. After the transient response 

time passes (t+ > 1/ +), the advection term balances with the diffusion term in Eq. (21). 

Hence, we call 1/ + the response time scale, which represents time for the concentration 
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boundary layer to response to the surface divergence. In this case, the local mass 

transfer rate kBw  can be calculated analytically as: 

 kBw =
q*

u* CBw

*
=

2 +

Sc
. (24) 

Here, the typical length-scale of the concentration boundary layer is given by 

B
+ ~ +Sc( )

1/2
. This length is similar to the Batchelor length-scale [26], which 

describes the smallest scale of concentration fluctuation in isotropic turbulence, if + is 

taken as the typical intensity of straining motion. Therefore, we call this concentration 

boundary layer the Batchelor sublayer. Conversely, if + is negative, i.e., in the case of 

flow away from the interface (see, Fig. 8 (b)), the concentration boundary layer is 

stretched exponentially with time, so that kBw  rapidly diminishes.  

In the case of the fluctuating surface divergence given by Eq. (22), the 

renewal time-scale 1 / 0
+ , which is the typical time-scale of a period of the velocity 

fluctuation, newly appears. If the renewal time-scale 1 / 0
+  is sufficiently larger than 

the response time-scale 1 / 0
+ , i.e., 0

+ / 0
+
>> 1, kBw  

can be estimated as follows: 

 kBw =
q*

u w CBw

*
==

2 +

Sc
~ 0.8

+

Sc
+
> 0

0 +
< 0.

 (25) 

The balance between the advection and diffusion terms can also be predicted 

independently from the above analysis by the decomposition of c = C + c '  and an 

order-of-magnitude estimation of the fluctuating term in Eq. (21): 

 

( )

( ) ( )

( ) ( ) ( )( )20
0 0

2

2

'
/ '/

' ' 1 '

c c c

O c
O C O C O c Sc

c dC c c
t y t y

t dy y Sc y
+

+ +

+ + + +

+ + + +

=

+ =  (26) 

Here, c is the thickness of the concentration boundary layer. Since the scale of the 

concentration fluctuation c’ is at most C, the advection term must balance with the 

diffusion term when 0
+ / 0

+
>> 1. 

 Hence, when 0
+ / 0

+
>> 1 , the concentration fluctuation is in phase with the 

velocity fluctuation (Rcv ~ 1) and the global mass transfer rate is correlated with the 
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intensity of the surface divergence as: 

 Kw
+
=
Kw
*

u
w

*
= A 0

+

Sc
. (27) 

where the dimensionless proportional constant A is 0.36 (see, Fig. 7).  

 On the other hand, when 0
+ / 0

+
< 1 , the velocity fluctuates so frequently 

that the balance between the advection and diffusion terms does not hold anymore. 

Instead, the transient and advection terms become dominant throughout the 

concentration boundary layer. In this case, the transport equation (21) is approximated 

by: 

 

  

c '

t+
+ t+( ) y+ dC

dy+
~ 0 . (28) 

By substituting 
  
c ' = ĉ exp i

0

+
t
+( )  and 

  

+
t
+( ) = ˆ exp i

0

+
t
+( ) , we obtain 

 ĉ =
ˆ

i 0
+

dC+

dy+
y+ . (29)  

Equation (29) indicates that the velocity fluctuation is out of phase with the 

concentration fluctuation by 90 degrees, and therefore does not contribute to the mass 

transfer. This explains the drastic decrease of Rcv and Kw in Fig. 7 when 0
+ / 0

+
< 1 . In 

this case, the gas transfer rate converges to the value predicted by the film model [27], 

i.e., Kw
+
= 1 / ScL+( )  (see, Fig. 7). 

 We confirmed that the balance of the fluctuating three terms in Eq. (21) 

switches from one of the above-mentioned two to the other in the neighborhood of 

0
+ / 0

+
 = 1. As a result, the mass transfer mechanism drastically changes as shown in 

Fig. 7. Hence, we can conclude that the surface divergence contributes to the mass 

transfer only when 0
+ / 0

+
 > 1. In this case, the local mass transfer rate k can be 

predicted by using the local surface divergence + given by Eq. (25). 

 

4. 3. Quantitative relationship between local mass transfer rate and surface 

divergence 

 The contribution of the surface divergence 
+
 to the interfacial mass flux at 
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Scw = 100 obtained in the present calculation is shown in Fig. 9(a). The contour value 

represents the product of the local mass transfer rate k
+
 and the joint probability density 

function of 
+
 and k

+
, so that the integral of the contour value over the whole 

+
-k

+
 

plane is identical to the total interfacial mass flux. The most interfacial mass flux occurs 

in the region of  > 0, and the contour shows good agreement with the prediction (25), 

which is depicted as a solid line.  

 In order to demonstrate the robustness of the surface divergence model (25), 

we conduct an additional calculation for high Schmidt number turbulent mass transfer 

across a shear-free interface. Upwelling and downwelling motions at a sheared interface 

are driven by streamwise vortices as shown in Fig. 6. In contrast, at a shear-free 

interface, they result from the distortion of bulk turbulence due to the interfacial 

blocking effects [28, 29]. For these reasons, sheared and shear-free interfaces are 

sometimes referred to “active” and “passive” interfaces, respectively.  

 We consider an open channel flow, where a shear-free boundary condition is 

imposed for the tangential velocity components at the interface, while a no-slip 

condition for the bottom boundary. The interface is kept flat like the sheared case. The 

Reynolds number based on the friction velocity u  at the bottom wall and the depth  is 

set to be Re  = 150. The constant concentration conditions are imposed at the interface 

and the bottom wall, i.e., c = 1 and 0, respectively. The computational method and grids 

used for solving the high Schmidt number concentration filed are essentially the same as 

those used for the sheared interface.  

In Fig. 9 (b), the contribution of the surface divergence to the interfacial mass 

flux at Scw = 100 at a shear-free interface is shown. Again, the present result agrees with 

the surface divergence model (25). It is worth noting that the data at a shear-free 

interface exhibits better agreement than those at a sheared interface. One sensible 

explanation for this would be the difference in the frequency range of the surface 

divergence fluctuation between the two interfaces. As discussed in Sec. 4.2, the 

time-scale ratio 0
+ / 0

+  is considered as the effectiveness indicator of the surface 
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divergence in the mass transfer. It is possible that the typical frequency of the surface 

divergence at a shear-free interface is lower than that at a sheared interface, so that the 

resultant effectiveness of the surface divergence is enhanced. 

 In summary, the present results indicate that Eq. (25) is quite robust regardless 

of the presence of the interfacial shear. 

 

4. 4. Budget of normal turbulent mass flux 

The importance of the normal velocity fluctuation in the interfacial mass 

transfer is also highlighted in the budget equation for the interface-normal turbulent 

mass fluxes cw
+ 'vw

+ '  in the water phase given by: 

 

   

D c
+

'v
+

'( )
Dt

+
= v

+
'
2

C
+

y
+

Production

c
+

'v
+

'v
+

'

y

Turbulent diffusion

+
y

c
+

'
v
+

'

y
+
+

1

Sc
v
+

'
c
+

'

y
+

Molecular diffusion

  

 

Concentration pressure- Dissipation
gradient correlation

' 1 ' '
' 1

j j

p c v
c

y Sc x x

+ + +

+

+ + +
+ . (30) 

Each term of Eq. (30) is shown in Figs. 11 (a) and (b). At Sc
w
 = 1.0, the 

production balances with the concentration pressure-gradient correlation away from the 

interface. The dissipation and molecular diffusion is generally very small except in the 

diffusive sublayer. On the other hand, at Sc
w
 = 100, the dissipation as well as the 

molecular diffusion becomes more dominant. An interesting feature is that the sign of 

the dissipation turns opposite where the sign of the molecular diffusion also changes. 

This trend is also found in the DNS data of Kawamura et al. [30] and Lakehal et al. [31] 

at moderate Schmidt numbers up to 10. As a result, the dissipation becomes a major 

source term in the region of y+
w
 > 1. By decomposing the dissipation term 

  
1+ Sc

1( ) c '/ x
j( ) v '/ x

j( )  into three directional components, it is found that the 

component in the y direction 
  

1+ Sc
1( ) c '/ y( ) v '/ y( )  is dominant among the 

three (not shown here). 
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 The above facts can be explained by a conceptual figure shown in Fig. 8. 

Since we consider the concentration field inside the viscous sublayer, we assume that 

v '/ y  is nearly constant in this region. When an upwelling flow occurs, i.e., v '/ y  

< 0, the concentration gradient becomes steeper than the mean concentration gradient 

inside the Batchelor sublayer, i.e., c '/ y  < 0, while flatter outside the Batchelor 

sublayer, i.e., c '/ y  > 0 (see, Fig. 8 (a)). Therefore, the dissipation of cw
+ 'vw

+ '  turns 

positive outside the Batchelor sublayer. On the other hand, in the case of a downwelling 

flow, i.e., v '/ y  > 0, the concentration profile is stretched downward, and the sign of 

c '/ y  becomes positive close to the interface, while negative far from the interface 

(see, Fig. 8 (b)). As a result, the dissipation rate becomes positive outside the Bachelor 

sublayer in both cases.  

 According to the above consideration, the dissipation term produces cw
+ 'vw

+ '  

when the Bachelor sublayer 
  B

+
=

rms

+
Sc( )

1/ 2

 is thinner than the viscous sublayer. 

Under the present flow conditions, 
 B

+  is nearly equal to 0.4 when Sc
w
 = 100. This 

roughly agrees with the zero-crossing point of the dissipation of cw
+ 'vw

+ '  in Fig. 10 (b). 

It should be also noted that two major source terms of cw
+ 'vw

+ '  at Sc
w
 = 100 in Fig. 10 

(b) are the production and dissipation terms, which are tightly linked to the normal 

velocity fluctuation. This means that the interfacial-normal straining motion associated 

with the surface divergence is the essential mechanism for generation of cw
+ 'vw

+ ' . 

 

4. 5. Mass Transfer Rate 

 Equation (27) can be rewritten in the dimensional form as: 

 

  

K
w

*
=

Q
*

C
B

w

*
= A D

w

*

rms

*( )
1/ 2

. (31) 

The dimensionless proportional constant of A has fallen within 0.2 ~ 0.7 in the previous 

studies. McCready et al. [24] carried out numerical simulation of a simplified 

two-dimensional transport equation and concluded that A = 0.71. The LES data of 
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Calmet and Magnaudet [16] and Magnaudet and Calmet [17] suggested A = 0.6 for both 

shear-free and sheared interfaces. Note that their definition of 
  

C
B

w

*  in Eq. (31) is the 

concentration difference between the interface and y = L, where L is an integral eddy 

scale. If we use the same definition, A in the present study is slightly increased by 4%. 

The grid-stirred tank data of McKenna and McGillis [13] lead to A ~ 0.5 for a clean 

interface and A ~ 0.3 for a contaminated interface. The wind-wave channel data of 

Turney et al. [14] suggested A = 0.45. Banerjee et al. [15] reported that a value of A = 

0.45 predicts their DNS data. The experimental data of Tamburrino and Gulliver [12] 

and Law and Khoo [11] for shear-free and sheared interfaces suggested A = 0.24 and 

0.22, respectively.  

It is quite interesting that most of the previous data for a clean interface 

concentrated around A = 0.4 ~ 0.5. This value agrees with the present hybrid DNS/LES 

data, i.e., A = 0.40 and 0.44 for sheared and shear-free interfaces, respectively. 

Furthermore, these values are close to the value of A = 0.36 obtained by the 

one-dimensional transport equation (21), although a single sinusoidal wave is assumed 

for the velocity fluctuation. These results suggest that the balance between the advection 

and diffusion terms determines the local mass flux under a variety of flow conditions.  

 Finally, we briefly remark the relationship between the surface divergence 

model and the conventional surface-renewal model. Equation (3) is identical to Eq. (31) 

if we take the response time-scale 1 / rms
*  as the surface-renewal time s

* . However, 

the original surface-renewal concept proposed by Danckwerts [3] divides the transport 

process into advection and diffusion processes, and assumes that the two separate 

processes alternatively occur at every time period of surface renewal s
* . This is in 

contrast to the surface divergence model, where the balance of the advection and 

diffusion terms determines the local mass flux. Since the original surface-renewal 

model cannot inherently describe convective surface-renewal motion, Fortescue and 

Pearson [32] improved the model and proposed a two-dimensional eddy-cell model, in 

which an eddy cell periodically and continuously renews the free surface. Later, this 
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model was further improved by incorporating the ideas of the time/space fraction of the 

surface renewal events [8, 23]. In the improved eddy-cell models, the surface-renewal 

time is represented by the ratio of the typical velocity scale to length scale of the eddy 

cell. This quantity is essentially the same as the surface divergence. This would be the 

reason why the mass transfer rate was well estimated by the surface-renewal eddy-cell 

model for both sheared and shear-free interfaces [7, 23]. 

Recently, the surface divergence model draws attention because it is a 

quantity that can be directly measured. On the other hand, the surface renewal time s
* , 

which is critical in the surface renewal model (3), has to be inferred, since it cannot be 

directly measured. As pointed out by Turney et al. [14], this might allow remote sensing 

methods to be used for measuring the surface divergence. This has the potential to 

provide more reliable estimates of the air-sea gas exchange. 

 

5. CONCLUSIONS 

 Numerical simulation of high Schmidt number mass transfer across a sheared 

air-water interface was carried out via a hybrid DNS/LES scheme. For a slightly soluble 

gas considered here, the most concentration change occurs in the water phase. As a 

result, the air-water interface is almost equivalent to the constant concentration 

boundary for the water phase. In contrast, the concentration fluctuation in the air phase 

has a peak at the interface due to the impingement of fresh water on the interface. 

 Because of the large density ratio, the dynamical coupling between the air and 

water turbulent flows was found to be quite weak at the low wind velocity considered 

here. Instead, the self-sustaining mechanisms due to the mean shear govern turbulence 

in the water phase. The spatio-temporal correlations and the visualizations of the 

velocity and concentration fields reveal that the surface divergence induced by the 

quasi-streamwise vortices in the water phase controls the interfacial mass transfer.  

In order to investigate quantitative relationship between the local mass flux 

and the surface divergence, a one-dimensional advection-diffusion equation was 
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analyzed. In this model, the fluctuating surface divergence is modeled as 

  

+
t
+( ) = 2

0

+
cos

0

+
t
+( ) . It is shown that the concentration field near the interface is 

governed by the ratio of the response time-scale 1 / 0
+  and the renewal time-scale 

1 / 0
+ . The fluctuating surface divergence contributes to the mass transfer only when 

0
+ / 0

+  > 1, and if this is the case, the local mass transfer rate can be estimated from 

the surface divergence by the Chan and Scriven’s stagnation flow model (25). This 

would be a primary reason why the mass transfer rate has been successfully correlated 

with the intensity of the surface divergence under a wide range of flow conditions. 

The present analysis showed that the surface divergence model is valid only 

when 0
+ / 0

+  > 1. In a highly contaminated interface, however, the surface divergence 

is strongly damped and does not satisfy this condition anymore. Consequently, the mass 

transfer rate falls down to the value at a solid surface [9]. Also, for the decaying 

free-surface turbulence considered in Pan and Banerjee [33],
 
counter-rotating vortices 

persist at the interface and die out very slowly. In this situation, the tangential 

components of the convection terms in the original transport equation (16) should also 

be important. Development of the mass transfer model in such flow fields remains to be 

future work. 
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TABLE 1. Computational conditions 

(Number of modes, number of grid points and grid spacings) 

 

  Region kx, ky or Ny, kz  x
+
  y

+
  z

+
 

Velocity DNS 0 < y
+
 < 150 64, 129, 64 18.4 0.01 ~ 1.23 7.2 

DNS 0 < y
+
 < 11.3 192, 34, 192 6.1 0.01 ~ 0.62 2.4 

Switching 11.3 < y
+
 < 21.6 192, 15, 192 6.1 0.66 ~ 0.85 2.4 Case 1 

LES 21.6 < y
+
 < 150 64, 144, 64 18.4 0.86 ~ 1.23 7.2 

DNS 0 < y
+
 < 22.8 192, 50, 192 6.1 0.01 ~ 0.79 2.4 

Switching 22.8 < y
+
 < 35.4 192, 15, 192 6.1 0.81 ~ 0.85 2.4 Case 2 

LES 35.4 < y
+
 < 150 64, 128, 64 18.4 0.86 ~ 1.23 7.2 

       

Velocity DNS 0 < y
+
 < 150 64, 289, 64 18.4 0.002 ~ 0.38 7.2 

DNS 0 < y
+
 < 16.5 512, 94, 512 2.3 0.002 ~ 0.34 0.9 

Switching 16.5 < y
+
 < 21.6 512, 15, 512 2.3 0.35 ~ 0.38 0.9 Case 3 

LES 21.6 < y
+
 < 150 64, 324, 64 18.4 0.002 ~ 0.38 7.2 

       

Velocity DNS 0 < y
+
 < 150 96, 129, 96 12.3 0.01 ~ 1.23 4.9 

DNS 0 < y
+
 < 11.3 192, 34, 192 6.1 0.01 ~ 0.62 2.4 

Switching 11.3 < y
+
 < 21.6 192, 15, 192 6.1 0.66 ~ 0.85 2.4 Case 4 

LES 21.6 < y
+
 < 150 96, 144, 96 12.3 0.86 ~ 1.23 4.9 
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Figure captions 

 

 FIG. 1. (a) Computational domain, coordinate system and  

  (b) grid system in the hybrid DNS/LES method. 

 FIG. 2. Mean concentration profile. 

 FIG. 3. Concentration fluctuation in (a) water and (b) air phases. 

 FIG. 4. Spatio-temporal correlation between local mass transfer rate and 

velocity/concentration fluctuations close to the interface at (a) Scw = 1.0 

and (b) Scw = 100. 

 FIG. 5.  Local mass transfer rate at (a) Sc
w
 = 1.0 and (b) Sc

w
 = 100. 

 FIG. 6.  (a) Local mass transfer rate k at Sc
w
 = 1.0 and 100, surface divergence +

w
 

and interfacial streamwise shear stress fluctuation x ' .  

  (b) Concentration and velocity fluctuations in the y-z plane. 

 FIG. 7. Mass transfer rate Kw
+  and correlation coefficient Rcv between velocity 

and concentration fluctuations at the interface when L = Sc 0
+ L+ = 50 . 

 FIG. 8.  Mechanism of cw 'vw '  generation due to the normal straining motion near 

the interface in the cases of (a) upwelling flow = v / y
y=0

 > 0 and  

  (b) downwelling flow = v / y
y=0

 < 0. 

 FIG. 9.  Contribution of the surface divergence +
w
 to local mass transfer rate k

B
 at 

(a) sheared and (b) shear-free interfaces. 

 FIG. 10.  Budget of the normal turbulent mass flux cw 'vw '   

  at (a) Sc
w
 = 1.0, (b) Sc

w
 = 100. 
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Figure 1 

 

 

 

 

 

FIG. 1. (a) Computational domain, coordinate system and  

  (b) grid system in the hybrid DNS/LES method. 
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Figure 2 
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 FIG. 2. Mean concentration profile. 
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Figure 3 
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 FIG. 3. Concentration fluctuation in a) air and b) water phases. 
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Figure 4 

 

(a) 

 

 

 FIG. 4. Spatio-temporal correlation between local mass transfer rate and 

velocity/concentration fluctuations close to the interface  

 at (a) Scw = 1.0 and (b) Scw = 100. 
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Figure 4 

 

(b) 

 

 

FIG. 4. Spatio-temporal correlation between local mass transfer rate and 

velocity/concentration fluctuations close to the interface  

 at (a) Scw = 1.0 and (b) Scw = 100. 
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Figure 5 
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   FIG. 5.  Local mass transfer rate k at (a) Sc
w
 = 1.0 and (b) Sc

w
 = 100. 
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Figure 6 

 

 

 

 

 FIG. 6.  (a) Local mass transfer rate k at Sc
w
 = 1.0 and 100, surface divergence +

w
 

and interfacial streamwise shear stress fluctuation x ' .  

  (b) Concentration and velocity fluctuations in the y-z plane. 
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Figure 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 FIG. 7.  Mass transfer rate Kw
+  and correlation coefficient Rcv between velocity 

and concentration fluctuations at the interface when L = Sc 0
+ L+ = 50 . 
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Figure 8 
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 FIG. 8.  Mechanism of cw 'vw '  generation due to the normal straining motion near 

the interface in the cases of (a) upwelling flow = v / y
y=0

 > 0 and  

  (b) downwelling flow = v / y
y=0

 < 0. 
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Figure 9 

(a) 

 

 

 FIG. 9.  Contribution of the surface divergence +
w
 to mass transfer rate k

B
  

  at (a) sheared and (b) shear-free interfaces 
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Figure 9 

(b) 

 

 

 

 FIG. 9.  Contribution of the surface divergence +
w
 to mass transfer rate k

B
  

  at (a) sheared and (b) shear-free interfaces 
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Figure 10 
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 FIG. 10.  Budget of the normal turbulent mass flux cw 'vw '   

at (a) Sc
w
 = 1.0, (b) Sc

w
 = 100. 

 


