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Table 1 Computational condition

ployed to obtain the spatio-temporal evolution process of tur-
bulence-producing eddies.

NUMERICAL METHOD
    The Navier-Stokes equation is derived with the contravariant
velocities through the coordinate transformation. A staggered
grid system is adopted. The coupling between continuity and
momentum equations is achieved through the fractional step
method. The second order central difference scheme is used
for spatial discretization and all the terms are advanced in time
with the Crank-Nicolson method. The computational domain
is shown in Fig. 1, where d is the channel half-width and Rc is
the radius of curvature at the channel center line. Four test cases
are listed in Table 1. The computational domain is  2.5pd x 2d
x pd in the streamwise, wall-normal and spanwise directions,
respectively, and is covered 64x128x64 grid points. The no-
slip condition about the velocity field and iso-heat flux condi-
tion about the temparature field are employed at the wall.

DNS OF TURBULENT CURVED CHANNEL FLOW
Friction Coefficient and Nusselt Number
    The skin friction coefficient C u

f w
= ( )2

2t r q/  and the Nusselt
number Nu hd= 2 / l , where h q T T

w w
= - [ ]( )/ , are shown as a

function of the curvature in Fig. 2. Here, the bracket denotes
the integral mean value from each wall to the maximum veloc-
ity point and C

f0
 and Nu

0
 represent the values of the plane chan-

nel. As the curvature increases,  the friction coefficient increases
on the concave side due to the centrifugal instability effect,
while it decreases on the convex side. The Nusselt number

ABSTRACT
    The effect of wall curvature on the turbulent structure in
curved channel flow is investigated by means of direct numeri-
cal simulation (DNS). Four different radii of curvature, d/
Rc=0.013, 0.05, 0.1 and 0.2, are studied. The DNS results show:
1) reduction of turbulence intensities on the convex wall, and
2) increase of radial turbulence intensity in the central region
of channel with the increase of curvature. It is revealed that
such turbulence modulation is attributed to the extra produc-
tion of the Reynolds stress caused by the centrifugal force.
Moreover, a spatio-temporal LSE (Linear Stochastic estima-
tion) is applied in order to extract the development of turbu-
lence-producing eddies affected by centrifugal force. It is clari-
fied that the development of turbulence-producing motion is
associated with the large-scale strong roll-cell working against
the centrifugal stabilizing effect on the convex side, whereas
those vortices are not observed on the concave side. In addi-
tion, strong outward and inward motions induced by the roll
cell in the channel central region appear prior to the develop-
ment of second and fourth quadrant motions, respectively.

INTRODUCTION
    Flow over a curved surface frequently appears in the indus-
trial applications such as aerofoils, turbine cascades, pipe lines,
and so on. In order to attain increased efficiency of
fluidmachinery, it is very important to clarify the curved flow
that involves inherent unstable and stable effects.
    Experimental studies of wall turbulence subject to a stream-
line curvature were carried out, e.g., by Wattendorf (1935) and
Eskinazy and Yeh (1956). In these investigations, the consid-
eration is mainly restricted to the first-order statistics. On the
other hand, direct numerical simulation conducted by Moser
and Moin (1987) provides various statistics, but it only deals
with ‘weak’ curvature. Therefore, the current knowledge on
the dynamical mechanism affected by streamwise curvature
still remains insufficient.
    In this study, direct numerical simulation of fully developed
turbulent curved channel flow is carried out to clarify the pro-
duction and dissipation mechanisms near the convex and con-
cave walls, and space-time linear stochastic estimation is em-

-139-

Proc. 3rd Int. Symp. on Turbulence and Shear Flow Phenomena, Sendai, June 2003



3.0

2.5

2.0

1.5

1.0

0.5

0.0

u q'
rm

s

2.01.51.00.50.0
y/d

 d/Rc = 0.013

 d/Rc = 0.05

 d/Rc = 0.1

 d/Rc = 0.2

Moser&Moin(d/Rc=0.013)
 Kuroda&Kasagi

       (plane channel)

1.6

1.4

1.2

1.0

0.8

0.200.180.160.140.120.100.080.060.040.020.00

d/Rc

  Cf /Cf0

  Nu/Nu0

convex side

concave side

Fig. 2 C
f
 and Nu versus d/Rc.

(a)

(b)

Fig. 3 Turbulence intensity distributions.

(a) streamwise component; (b) radial component.

Fig. 4 Flux Richardson number distributions.

Fig. 5 Quadrant analysis on convex side (d/Rc=0.05).

Fig. 6 Quadrant analysis on concave side (d/Rc=0.05).

shows a similar trend, but the rate of change is generally larger
than that of the friction coefficient.

    Figure 3 shows the rms turbulence fluctuation distributions.
On the convex side, the streamwise turbulence intensity is no-
ticeably reduced due to the stabilizing centrifugal effect. The
radial turbulence intensity excels in the central region of chan-
nel with increasing the curvature. It eventually exceeds the
streamwise component when the curvature is larger than 0.05.

Flux Richardson Number Distributions
    The flux Richardson number, which is originally defined to
represent the buoyancy effect in the stratified flow, is extended
to the flow with streamline curvature (Bradshaw, 1969). This
number is expressed by the ratio of the radial turbulence pro-
duction by the centrifugal force to the streamwise turbulence
shear production, i.e.,

R
U r

r U r rf =
∂ ∂

2 q

q

/

( / ) /
. (1)

The streamwise and radial production terms are expressed as
follows:

P u u r
U r

r
u u

U

rr rqq q
q

q
q= -

∂( )
∂

+
Ê
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ˆ
¯̃

2 2
/

, (2)

P u u
U

rrr r= 4 q
q . (3)

The second term of Eq. (2) and Eq. (3) have the same absolute
value with opposite signs. This implies the redistribution be-
tween streamwise and radial Reynolds stresses through the cen-
trifugal effect. Therefore, the flux Richardson number also rep-
resents the ratio of redistribution to shear production. As shown
in Fig. 4, R

f
 takes positive values on the convex side. Although

this distribution implies the occurrence of redistribution from
radial to streamwise direction, the effect is small. On the other
hand, R

f
 takes negative values on the concave side. This is at-

tributed to the energy flow from the streamwise to the radial
directions. Especially, R

f
 is less than -1 in the channel central

region when the curvature is larger than 0.05. This means that
the energy flow from the streamwise to radial directions is larger
than the shear production. Through this effect, the radial tur-
bulence intensity excels as observed in Fig. 3(b).

Quadrant Analysis
    The quadrant analysis of the Reynolds shear stress provides
detailed information on the contribution of various combina-
tions of positive and negative uq and u

r
 to the turbulent stress

production. Figure 5 shows the quadrant analysis on the con-
vex side when d/Rc=0.05. We define y+ as the local wall coor-
dinate on the convex wall. The fourth quadrant is the main
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Fig. 7 Joint probability density function distribution at y+=13.
(a) convex side; (b) concave side (d/Rc=0.05).

(a) (b)

Fig. 8 Contribution to the Reynolds shear stress at y+=13.
(a) convex side ; (b) concave side (d/Rc=0.05).

(a) (b)

(a)

(c)

(b)

Fig. 9 Time development of the fourth quadrant vortices and
high speed region on the convex side (d/Rc=0.05).

(a) t+=-10.5; (b)t+=0; (c)t+=10.5.

White, II+=0.22x10-3; gray contour, ûq =-2.4 to 2.4 (y+=10).

contributor to the Reynolds shear stress in the entire region on
the convex side, and this fact indicates that on the stable side
the turbulent motion is maintained by the inflow of high speed
fluid. Figure 6 represents the quadrant analysis on the concave
side. The fourth quadrant most contributes to the Reynolds shear
stress only in the region of y+<10, whereas the second quad-
rant acts as the main contributor in the other region. This trend
is similar to that of plane channel. Moreover, on the convex
side the contribution of the second and fourth quadrants has
almost the same absolute value of that of first and third quad-
rants, whereas on the concave side the second and fourth quad-
rants contribute much greater than first and third quadrants.
This trend is further investigated on the following section.

Joint Probability Density Function and Contribution to the
Reynolds Shear Stress
    Figure 7 shows the joint probability density function distri-
bution with respect to the velocity fluctuations uq and u

r
 on the

convex and concave walls. Here, the velocity fluctuations uq
and u

r
 are normalized by their standard deviations. A distribu-

tion of elliptic form appears and definite correlation is scarcely
seen on the convex side. In contrast, strong negative correla-
tion appears on the concave side due to the high occurrence
possibility of the second and fourth quadrant motion.
    The contribution to the Reynolds shear stress, uqur

 f(uq , u
r
),

on the convex and concave sides is shown in Fig. 8. Here, f(uq,
u

r
) is the joint PDF, and the following relationship holds:

u u u u f u u du dur r r rq q q q= ÚÚ ( , ) . (4)

On the convex side (Fig. 8(a)), all the quadrants contribute to
the Reynolds shear stress. Especially, large peaks are seen in
the second and third quadrants. On the concave side, the distri-
bution on the second and fourth quadrants is pronounced
whereas the contributions from the first and third quadrants
are diminished.

SPATIO-TEMPORAL LINEAR STOCHASTIC ESTIMATION

    The Linear Stochastic Estimation (LSE) which is originally
proposed by Adrian(1975) is a statistical estimation procedure
of the representative flow structure for a given velocity condi-
tion around a sample point. In this study, this technique is ex-
tended to a spatio-temporal LSE for the purpose of extracting
the development process of turbulence production eddies af-
fected by the centrifugal force. Through this procedure, an es-
timated velocity field, ûi, is represented by the velocity condi-
tion u

cj
 through the linear combination, i.e.,

ˆ ( ' , ; , ) ( , )u t A u ti ij cjx x xt = , (5)

where x is the point where the velocity condition is imposed,
x’ is the location relative to x, t is the time when the velocity
condition is given and t is the elapsed time from t. A location
of y+ =15 is adopted as the velocity condition point x and the
velocities which have the maximum contribution to the sec-
ond and fourth quadrants of Reynolds shear stress are used as
the velocity conditions. The curvature, d/Rc, is set to 0.05 in
which the radial turbulent intensity becomes larger than the
streamwise component (Fig. 3). The velocities that have the
maximum contribution to the Reynolds shear stress are uq=-
1.89, u

r
=7.99x10-2 (second quadrant) and uq=2.45, u

r
=-0.176

(fourth quadrant) on the convex side, whereas those are  uq=-
5.64, u

r
=0.6 (second quadrant) and uq=-3.24, u

r
=-0.2 (fourth

quadrant) on the concave side.
    The estimation coefficient A

ij
 in Eq. (7) is determined under

the least square condition of the difference between the veloc-
ity obtained by the conditional averaging and that estimated
by Eq.(7). According to this procedure, the coefficient A

ij
 is

obtained from the space-time two point correlation of the ve-
locity components.
    Hereafter, we refer the movement induced by the second/
fourth quadrant as second/fourth-quadrant motion.

d
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Fig. 10 Time development of the fourth quadrant vortices
and high speed region on the concave side.

(a) t+=-10.5; (b) t+=0; (c) t+=10.5 (d/Rc=0.05).

White, II+=0.44x10-3; gray contour, ûq =-3.22 to 3.22 (y+=10)

(a)

(c)

(b)

 Fig. 11 Estimated velocity vector ûr , ûz  and Reynolds
stress ûq ûr contour on the convex side. (a) 2nd quadrant;

(b) 4th quadrant; t+=0, x+=0.

 Fig. 12 Estimated velocity vector ûr , ûz  and Reynolds stress
ûq ûr contour on the concave side. (a) 2nd quadrant; (b) 4th

quadrant; t+=0, x+=0.

y’

y’

z’
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z’
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Time Development of the Turbulence Producing Eddies and
High-Speed Region
    Figure 9 shows the evolution of the fourth quadrant vortices
and high speed region on the convex side. The vortices are
identified by the second invariant of velocity deformation ten-
sor II = u

i,j
u

j,i
. At t+=-10.5 (Fig. 9(a)), a hairpin-like vortex is

detected and this structure is maintained until t+=0. After that,
the vortex structure becomes a pair of streamwise vorticies as
a consequence of the attenuation of the hairpin-head. This struc-
ture is convected further downstream with decaying. On the
other hand, in the development of the fourth quadrant vortices
on the concave side (Fig. 10), a pair of streamwise vortices is
detected and this structure is developing toward t+=0. The es-
timated vortical structure at t+=0 remains as a pair of streamwise
vortices. Furthermore, the high speed streak appears under the
region between the streamwise vortices. As the time elapses,
the pair of vortices becomes thinner while being convected
downstream (Fig. 10(c)).

The Vortical Structure in the y’-z’ Cross-section
    Figure 11 shows the estimated velocity vectors and the
Reynolds shear stress contour in the y’-z’ cross-section (y’:wall-
normal direction; z’:spanwise coordinate relative to the veloc-
ity condi0tion point) on the convex side at x’=0 and t’=0. The
upper edge of Fig. 11 corresponds to the channel center plane
and the bottom edge to the convex wall. In the case of second
quadrant (Fig. 11(a)), a strong Reynolds stress is induced around
the point where the velocity condition is given. The second
quadrant motion that is directed away from the wall is seen at

the same point. A pair of large roll cells, which makes strong
upward motion along z’=0, is additionally observed in the chan-
nel central region. This result suggests that a strong upward
motion induced by the large organized vortices is required for

d

d

d
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Fig. 14 Estimated radial velocity ûr  on the reference frame with convective velocity

(concave side, (a) 2nd quadrant; (b) 4th quadrant; x’=0 at t=0, z’=0)

(a)

(a) (b)

(b)

Fig. 13 Estimated radial velocity ûr  on the reference frame with convective velocity.

(convex side, (a) 2nd quadrant; (b) 4th quadrant; x’=0 at t=0, z’=0)

the second quadrant motion to develop against the centrifugal
stabilizing effect on the convex side.
    A similar feature also appears in the case of fourth quadrant
motion as shown in Fig. 11(b). In this case, the roll cell ob-
served in the channel central region makes a strong downwash
and this downward motion produces the fourth quadrant mo-
tion at the point where the velocity condition is given. Another
interpretation is that the fourth quadrant motion is developed
through the downwash induced by the roll cell on the convex
wall.
    Figure 12 shows the velocity vectors and Reynolds stress
contour on the concave side. In the second quadrant motion
(Fig.12(a)), a strong flow is induced from both sides of the
spanwise direction to the velocity condition point  and directed
to the wall-normal direction. In contrast to the convex side,
large roll cells are not observed near the channel central re-
gion. A similar flow pattern can be seen in the fourth quadrant
motion (Fig. 12(b)). A strong flow is induced from the channel
center region toward the velocity condition point along the axis
of z’=0 and the fourth quadrant motion is produced at the ve-
locity condition point. After that, the flow is directed to the
both side of the spanwise direction. These two results suggest
that the strong vortex motion (such as roll cell) is not required
for the development of the second and fourth quadrant motion
on the concave side, since there is an inherent self-sustaining
mechanism which enhances the turbulent motion according to
Fig. 8(b).

Time Development of the Estimated Velocity on the Refer-
ence Frame with Convective Velocity
    In this section, we consider the time variation of the esti-
mated velocity along z’=0 axis on the convex and concave sides.
The estimated velocity is observed on the reference frame

moving with the convective velocity. The frame is x’=0 at t+=0
and translates to the downstream direction with the convective
velocity. The convective velocity is determined through the
spatio-temporal two point correlation.
    Figure 13(a) shows the time dependency of the estimated
radial velocity distributions in the second quadrant motion. The
radial velocity at the earliest time (t+ =-21) attains its maxi-
mum value in the channel middle region (y/d ~1.0) and mono-
tonically decreases as the time elapses. It is conjectured that
the second quadrant motion at t+=0 is induced due to the strong
outflow in the channel middle region driven by the roll cell
(Fig. 11(a)) at the prior time (t+<0). In accordance with that,
the radial velocity in the near-wall region (y/d~0.2) already
retains high value at the prior time (t+<0), following the dras-
tic decrease at t+>0 owing to the centrifugal stabilizing effect
on the convex side.
    The same tendency is seen in the fourth quadrant motion
(Fig. 13(b)). The radial velocity ûr  has maximum absolute
value at the most previous time t+=-21 in the channel middle
region and monotonically decreases as the time elapses. The
absolute value of the radial velocity in the near-wall region
rapidly increases from t+=-21 to -10.5, corresponding to the
downwash in the channel middle region. After that, ûr  takes
the same value at t+=0 and t+=-10.5 in the region near y/d =0.2,
whereas the estimated radial velocity begins to decrease near
y/d =0.4. Furthermore, a drastic decrease of the estimated ra-
dial velocity is observed at t+=10.5 and 21.
    The time dependency of the estimated radial velocity on the
concave side is shown in Fig. 14. In the second quadrant mo-
tion (Fig. 14(a)), the peak value of radial velocity is not ob-
served in the channel middle region in contrast to that on the
convex side. It is conjectured that the development of the sec-
ond quadrant motion is more autonomic than that on the con-
vex side. The radial velocity attains its peak value at t+=0. By
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Fig. 15 Time dependency of estimated Reynolds shear stress

ˆ ˆu urq  on the reference frame with convective velocity

(x’+=0 at t+=0, y+=15, z’+=0)

comparison between the curves at t+=-21 and t+=21, we notice
that the decaying process is milder than the development pro-
cess. This is attributed to the constraint of the second-quadrant
decaying motion affected by the centrifugal force, which should
enhance the second quadrant motion. A similar trend is ob-
served in the case of fourth quadrant (Fig. 14(b)) except for
the strengthened symmetry with respect to the time.
    Figure 15 shows the time dependency of the estimated
Reynolds shear stress ˆ ˆu urq  on the reference frame with the
convective velocity at y+=15 and z’=0. The Reynolds shear
stress is normalized by that of the conditional velocities, i.e., -
u

cqucr
. A significant asymmetry with respect to the time appears

on the convex side. Since the estimated streamwise velocity
has the strong temporal symmetry (not shown here), this trend
is mainly due to the significant asymmetry of the estimated
radial velocity shown in Fig. 13. On the other hand, develop-
ing and decaying processes show relatively similar time de-
pendency on the concave side. It is conjectured that the self-
sustaining mechanism has more strong temporal symmetry.

CONCLUSIONS
    DNS of turbulent curved channel flow is conducted to clarify
the momentum transport mechanism of turbulent wall shear
flow subjected to streamline curvature. The following conclu-
sions can be drawn.
    The radial turbulent intensity is enhanced as the curvature
increases. The Richardson number distribution reveals that this
is due to the extra production by the centrifugal effect.
    On the concave side, there is an inherent mechanism which

enhances the turbulent motion. This is clearly illustrated by
the distribution of the quadrant contribution to the Reynolds
stress. On the convex side, the turbulent motion is restrained.
    Furthermore, the time development characteristics of the
second- and fourth-quadrant motions are extracted by means
of the spatio-temporal linear stochastic estimation. It is clari-
fied that the development of turbulent production motion re-
quires the large strong roll cell in the channel middle region
against the centrifugal stabilizing effect on the convex side,
although those vortices are not observed on the concave side.
Moreover, the strong outflow or downwash induced by the roll
cell in the channel middle region is confirmed prior to the oc-
currence of each second or fourth quadrant motion respectively.
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