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Direct numerical simulation of turbulent channel flow at Reτ = 110 ∼ 650
is made in order to assess the feedback control algorithms which have been
proposed for reducing skin friction. The effectiveness of the existing control
schemes is decreased with increasing the Reynolds number from Reτ = 110
to 300. It is found, through the Karhunen-Loève (KL) decomposition of
turbulent fluctuations, that the KL modes around y+ = 20, which corre-
spond to the longitudinal vortices and near-wall streaky structures, play a
dominant role in the production of turbulent kinetic energy and wall shear
stress at Reτ = 110. The nonlinear interaction acts as sink for the turbu-
lence energy of vortical structures at y+ ∼ 20, and the energy is transferred
toward/away from y+ ∼ 20. On the other hand, when the Reynolds number
increases, vortical structures at y+ ∼ 20 gains energy through the nonlinear
interaction from the structures at 20 < y+ < 100. It is also found that
direct interaction between inner (y+ < 100) and outer (y+ > 100) layers
has minor effect on near-wall dynamics even at Reτ = 650.

1 Introduction

In the last few decades, transport mechanism of wall turbulence has been examined in detail.
It is found through direct numerical simulation (DNS) of low-Reynolds-number wall turbulence
that near-wall streamwise vortices play a dominant role in the turbulence energy production,
wall shear stress and wall heat flux [1, 2]. However, characteristics of coherent structures at
higher Reynolds numbers still remain unresolved, since various Reynolds number effect on wall
turbulence is observed [3, 4].

From a viewpoint of saving energy and protecting the environment, it is needed to develop
efficient turbulence control techniques for drag reduction and/or heat transfer augmentation.
Among various methodologies, active feedback control scheme attracts much attention because
of its large control effect with small power input [5, 6]. Choi et al.[7] employed local blow-
ing/suction on the wall, which is exerted to oppose the wall-normal velocity fluctuation in the
buffer layer (V-control), and obtained approximately 25% drag reduction in their DNS of turbu-
lent channel flow. Bewley et al.[8] showed that the turbulent channel flow could be ultimately
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relaminarized by an optimal control scheme. Although these control schemes have demon-
strated marked effectiveness, it is not straight forward to employ them in real applications,
because they inevitably require sensing at numerous points inside the flow field. Recently,
control algorithms using only wall variables have been developed. Lee et al.[9] proposed a
suboptimal control algorithm based on the linearized Navier-Stokes equation, and obtained a
simple analytical formula determining the control input based on the wall variables. These
pioneering studies have demonstrated that the active feedback control of wall turbulence is
promising and can be implemented in a real system with the aid of the emergent fabrication
technologies such as MEMS.

However, the Reynolds numbers assumed in most previous studies are about Reτ ∼ 100,
which is defined based on the wall friction velocity uτ , the channel half-width δ and kinematic
viscosity ν, where significant low-Reynolds-number effects must exist. Therefore, assessment
of the existing control schemes at higher Reynolds numbers should be undertaken.

The final goal of the present work is to develop a control algorithm applicable to high
Reynolds number flows. Iwamoto et al.[10] have shown the Reynolds number effect on wall
turbulence through the Karhunen-Loève (KL) decomposition at Reτ = 110 and 300. In the
present study, the contribution of coherent structures to the wall shear stress and nonlinear
interaction between vortical structures are examined through the KL decomposition up to Reτ

= 650 with finer resolution for the inner layer structures.

2 Numerical Method and Control Algorithm

The numerical method used in the present study is almost the same as that of Kim et al.[11];
a pseudo-spectral method with Fourier series is employed in the streamwise (x) and span-
wise (z) directions, while a Chebyshev polynomial expansion is used in the wall-normal (y)
direction. A fourth-order Runge-Kutta scheme and a second-order Crank-Nicolson scheme are
used for time discretization of the nonlinear terms and the viscous terms, respectively. The
computational conditions are summarized in Table 1. The Reynolds number Reτ is chosen as
110, 150, 300, 400, and 650. The flow rate is kept constant at each Reynolds number. Al-
though it is not shown here, turbulence statistics of the present computation for plane channel
flow are in good agreement with the DNS data of Moser et al.[3], and are available on the
web page at http://www.thtlab.t.u-tokyo.ac.jp. Hereafter, u, v, and w denote the velocity
components in the x-, y-, and z-directions, respectively. Superscript (+) represents quantities
non-dimensionalized with uτ and ν.

In order to evaluate the efficiency of feedback control algorithms at various Reynolds num-
bers, V-control scheme [7] and the suboptimal control [9] are adopted. In both cases, the
control input is local blowing/suction at the wall. In the V-control, it is given as:

v+
wall = −α v+

∣∣∣
y+=10

(1)

For the suboptimal control scheme, square of the wall-normal gradient of the spanwise velocity
is included in the cost function, and this leads to the control input:

v̂+
wall = α

ikz

k

∂ŵ+

∂y+

∣∣∣∣∣
wall

, k =
(
k2

x + k2
z

)1/2
(2)

where (ˆ) denotes the Fourier coefficient. In Eq. (2), kx and kz denote wavenumbers in the x-
and z-directions, respectively. The positive constant α is chosen in such a way that the power
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Table 1: Basic conditions of DNS of turbulent channel flow (∆y+
c is the y-interval at the

channel center).

Reτ

Computational
periods

Grid points Grid spacings

Lx Lz Nx, Ny, Nz ∆x+ ∆yc
+ ∆z+

110 5πδ 2πδ 96, 65, 96 18.0 5.40 7.20

150 5πδ 2πδ 128, 97, 128 18.4 4.91 7.36

300 2.5πδ πδ 128, 193, 128 18.4 4.91 7.36

400 2.5πδ πδ 192, 257, 192 16.4 4.91 6.54

650 2.5πδ πδ 288, 257, 384 17.7 7.98 5.32
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Figure 1: Dependence of drag reduction rate
on Reynolds number.
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Figure 2: Drag reduction rate versus power
input ratio.

input is 0.05 ∼ 0.4% of the pumping power. The power input Pin and the pumping power W
are respectively defined as

Pin ≡ pwallvwall + 1/2 · ρv3
wall, (3)

and
W ≡ −dP̄

/
dx · Umean. (4)

A fully developed flow field is used as the initial condition.

3 Reynolds Number Effect on Feedback Control

Figure 1 shows the drag reduction rate versus Reτ for the two control schemes examined. Since
the flow rate is kept constant, the drag reduction rate DR is given by

DR ≡ (W0 −W )/W0, (5)

where W0 denotes the pumping power for the unmanipulated flow.
The present result at Reτ = 110 is in good agreement with the DNS data of Choi et

al.[7] and Lee et al.[9]; the drag reduction of about 20% is achieved with α = 1. For the
V-control scheme with constant α, DR is decreased with increasing Reτ and eventually seems
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to reach some asymptotic values. On the other hand, for the suboptimal control scheme, DR
shows temporary increase and then decreases with increasing Reτ . It is about 12% at Reτ

= 650 with α = 1. This is probably because the suboptimal control algorithm is based on
the linearized Navier-Stokes equation, although nonlinear interaction near the wall becomes
more active with increasing Reτ as described later. Recently, Collis et al.[12] made large eddy
simulation of turbulent channel flow to assess the Reynolds number effect of V-control scheme
and reported decrease in the control effectiveness with increasing the Reynolds number.

Figure 2 shows DR versus the power input ratio Pin/W0, which corresponds to the fraction
of the blowing/suction work against the pumping power. Unlike in Fig. 1, DR of the V-control
scheme is decreased drastically as Reτ is increased when Pin/W0 is kept constant. However,
DR gradually becomes insensitive to the Reynolds number at Reτ > 300. The present result
is in accordance with the findings of Moser et al.[3] that obvious low-Reynolds-number effects
are absent at Reτ > 300. Note that the V-control scheme gives slightly larger DR than the
suboptimal control scheme with the same Pin/W0.

In the following chapter, we analyze the DNS database using the Karhunen-Loève decom-
position [13] in order to study the underlying flow mechanisms, which result in the marked
Reynolds number dependence presently explored. In particular, we focus on the dynamics of
coherent structures near the wall such as quasi-streamwise vortices and longitudinal streaks
[14]. We also try to obtain a clue for keeping control schemes effective at higher Reynolds
number flows.

4 Nonlinear Interactions between Coherent Structures

4.1 Karhunen-Loève decomposition

The Karhunen-Loève theory is based on the decomposition of the fluctuating velocity field into
a sum of eigenfunctions ψi of the two-point correlation tensor κij [13] as:

∫ 2δ

0
κij (y, y

′, m, n)ψj (y
′, m, n) dy′ = λ (m,n)ψi (y,m, n) , i, j = 1− 3, (6)

where m and n respectively denote wavenumbers in the x- and z-directions, while λ denotes the
eigenvalue. The total number of eigenvalues for wavenumber index pairs (m,n) is three times
of Ny, which is the number of grid points in the y-direction. Each eigenfunction is specified
with a triplet k = (m,n, q) [15].

4.2 Turbulent kinetic energy of KL modes

Figure 3 shows the normalized cumulative energy summation of the KL modes at each Reynolds
number. It is found that the convergence becomes slower with increasing the Reynolds number,
although only 190, 340, and 760 eigenfunctions can represent 50% of the total kinetic energy
at Reτ = 110, 300, and 650, respectively.

Figure 4 shows the most energetic eigenfunctions among the KL modes. For all Reynolds
numbers, δ-scale low- and high-speed regions associated with streamwise vortices are observed.
They are homogeneous (m = 0) in the streamwise direction at Reτ = 110 and 300, but not (m
= 1) at Reτ = 650. Although it is not shown here, KL modes containing streamwise vortices
near the wall have the largest contribution to the wall shear stress fluctuations at all Reynolds
numbers.
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Figure 3: Cumulative energy summation of
the KL modes.
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Figure 4: Most energetic eigenfunction
among the KL modes. Isosurfaces of u′+ and
the second invariant of the deformation ten-
sor Q+ are shown. White, u′+ = 0.15; black,
u′+ = -015; mesh, Q+ = 0. (a)Reτ = 110,
(b)Reτ = 300, (c)Reτ = 650.

In order to investigate the dynamics of coherent structures in detail, wall elevation of these
structure is characterized with the center of the vortices yv for each KL mode defined by the
global minimum of the second invariant of the deformation tensor Q+ [10]. Then, the KL
modes are divided into subgroups depending on the location of the center of the vortices yv.
The n-th subgroup u<n>

i is composed of linear superposition of the KL modes, of which yv

exist in between yn−1 and yn:

u<n>
i (x, y, z, t) =

∑
yn−1<yv<yn

ak (t)φk
i (x, y, z), (7)

where φi is the eigenfunction in physical space, y+
i = 5 · 1.5i−1, i ≥ 1 and y+

0 = 0 for all
Reynolds numbers. Hence, the number of subgroups are 9, 11, and 13 for Reτ = 110, 300, and
650, respectively. Because of the linear superposition of the KL modes, each subgroup as a
whole also satisfies the incompressibility, the no-slip boundary condition and the orthogonality.
Hereafter, quantities of the subgroup u<n> is plotted at ys = 0.5(yn−1 + yn) in all figures.

Figure 5 shows an instantaneous flow field for Reτ = 110, in which both the near-wall
vortical structures and those of the subgroup of y+

s = 21 are represented. Both of them
are visualized with the 3-D contours of the second invariant of the deformation tensor Q+(=
u+

i,ju
+
j,i) = −0.02. It is found that the trace of the subgroup almost always correspond to the

leg vortices in the instantaneous flow field, and the wall elevation of these structures is around
y+ = 21, that is y+ = y+

s . Thus, the subgroup mainly represents the instantaneous vortical
structures around y+ = y+

s . It is noted that subgroups of different y+
s also represents the

instantaneous vortices around y+ = y+
s (not show here).

4.3 Contribution of KL subgroups to Reynolds shear stress

The Reynolds shear stress can be written using the KL subgroups as

−u′v′ =
∑
n

−u<n>v<n> +
∑
m

∑
n(�=m)

−u<m>v<n>, (8)
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Figure 5: Near-wall coherent structures for Reτ = 110 (translucent gray, the second invariant
of the deformation tensor (Q+ < −0.02); red, the second invariant of the deformation tensor
of the subgroup of y+

s = 21 (Q+ < −0.02)).

1.0

0.8

0.6

0.4

0.2

0.0

-u
'+ v'

+

100806040200

y+

Reτ = 110

ys
+ = 21

ys
+ = 32

ys
+ = 47 ys

+ = 72

Total

Figure 6: Contribution of KL subgroup to the
Reynolds shear stress at Reτ = 110
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Figure 7: Contribution of KL subgroup to the
Reynolds shear stress at Reτ = 650

where the first term of RHS corresponds to the correlation between the same KL subgroup,
while the second term is that between different subgroups. It is found that the latter is less
than 1% of the former and is negligible.

Figure 6 shows the contribution of typical KL subgroups to the Reynolds shear stress
for Reτ = 110. The peak location of each subgroup is y+ ≈ y+

s , which means that the KL
subgroups mainly contribute to the Reynolds stress near the vortex center. The subgroup of
y+

s = 21 dominates close to the wall (y+ < 20), and the contribution of the subgroups of
y+

s > 47 is small. On the other hand, when Reτ = 650 (Figure 7), not only the near-wall
subgroups but also the subgroups away from the wall (y+

s ≤ 360) have large contribution to
the Reynolds stress.
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Figure 8: Fractional contribution of each KL
subgroup to the wall friction increase beyond
the laminar value.
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Figure 9: Energy budget of KL subgroup

4.4 Contribution of KL subgroups to mean wall shear stress

The total shear stress τ in the turbulent channel flow is given as

τ = µ
∂u

∂y

∣∣∣∣∣
wall

(
1− y

δ

)
= µ

∂u

∂y
− ρu′v′. (9)

Then, by integrating Eq. (9) twice in the y-direction [16], the mean wall shear stress can be
written with the bulk mean velocity and the Reynolds shear stress as;

∂u+

∂y+

∣∣∣∣∣
wall

=
3

Reτ
u+

mean +
3

Reτ

∫ δ+

0
−u′+v′+

(
1− y+

Reτ

)
dy+. (10)

The first term of RHS represents the wall shear stress for the laminar flow with same flow
rate. Under the constant flow-rate condition, the first term of RHS is also constant at each
Reynolds number and is about 0.38, 0.17, and 0.09 for Reτ = 110, 300, and 650, respectively.
The second term represents the contribution of the Reynolds shear stress to the wall shear
stress. Thus, the second term of RHS must be decreased in order to reduce the wall shear
stress in turbulent flows.

Figure 8 shows the fractional contribution of each KL subgroup to the second term of RHS
in Eq. (10). For Reτ = 110, the contribution of the subgroups around y+

s = 21 is dominant,
indicating that large drag reduction could be achieved only if the near-wall subgroups are
suppressed. When the Reynolds number increases, the contribution of the near- wall subgroups
is drastically decreased, while those of the subgroups of y+

s > 50 are increased. Therefore, for
the higher Reynolds number, the subgroups away from the wall should also be suppressed in
order to obtain the same degree of drag reduction.

4.5 Nonlinear interactions between KL subgroups

The energy balance equation of u<n>
i is derived as

0 =
∑
m

−u+<n>

i · u+<m>

j · U+
i,j −

∑
m

u+<n>

i,j · u+<m>

i,j +
∑

m( �=n)

−u+<n>

i · u+
j · u+<m>

i,j , (11)
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Figure 10: Nonlinear interaction term of the
subgroup of y+

s = 21.

-0.0010

-0.0005

0.0000

0.0005

0.0010

L
os

s 
   

   
   

 G
ai

n

300250200150100500

ys
+

 Reτ = 110
 Reτ = 300
 Reτ = 650

Nonlinear Interaction of ys
+ = 72

Figure 11: Nonlinear interaction term of the
subgroup of y+
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where the three terms of RHS respectively correspond to the production, dissipation and
nonlinear interaction between subgroups (NL). The over bar in Eq. (11) denotes the time-
space average.

Figure 9 shows the three terms of Eq. (11) of each KL subgroup for all Reynolds numbers.
For Reτ = 110, the subgroups below y+

s = 10 have no production, and only dissipate the energy
transferred from other subgroups through NL. The subgroup of y+

s = 21, which corresponds to
the streamwise vortices, has the largest production. About one third of the energy produced
is transferred to the other subgroups through NL, whereas the rest is dissipated. All the terms
become smaller with increasing ys, but the absolute value of NL is larger than 10% of that of
the production term at each subgroup. Therefore, NL plays an important role in the energy
budget. Note that NL is only negative at 17 < y+

s < 45, which shows similar trend with the
turbulent diffusion of the total turbulent kinetic energy. It is also noted that the production
and dissipation terms (the first two terms of Eq. (11)) have a finite value only when m = n
(not shown).

When the Reynolds number increases, the subgroups below y+
s = 10 gain larger energy from

the other subgroups through NL. Production of the subgroups of y+
s = 21 remains unchanged,

while NL energy transfer to the other subgroups is decreased. For y+
s > 45, NL becomes

negative, which implies that the vortices away from the wall transfer their energy to the other
subgroups through NL.

Figure 10 shows the nonlinear interaction term of the subgroup of y+
s = 21, which corre-

sponds to the near-wall streamwise vortices. For Reτ = 110, the energy is transferred not only
to the near-wall subgroups but also to the subgroups away from the wall. When the Reynolds
number increases, the energy is only transferred to the near wall subgroups. Therefore, the
net nonlinear interaction term only acts as inward energy transfer.

Figure 11 shows the nonlinear interaction term of the subgroup of y+
s = 72. For Reτ = 110,

the subgroup gains the energy from the subgroups of 14 < y+
s < 72, and loses the energy to

the subgroups of y+
s < 14. For Reτ = 650, on the other hand, the subgroup only loses the

energy to the subgroups of y+
s < 72. Therefore, the outward energy transfer becomes smaller,

and the inward energy transfer becomes larger with increasing the Reynolds number. We also
found that there is very small direct interaction between the subgroup of y+

s = 72 and outer
(y+

s > 100) layers even at Reτ = 650. Note that the tendency of the subgroups of y+
s < 100 is

almost same as that of y+
s = 72(not shown here).
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Previous studies have shown that the near-wall structures are self-sustained through re-
generation mechanisms [17, 18]. Recently, Jimenez & Pinelli [19] claim that the damping of
velocity fluctuations at y+ < 60 results in laminarization, whilst the near-wall turbulence re-
mains mostly unchanged when all the velocity fluctuations at y+ > 60 are filtered out. The
present findings with the KL decomposition demonstrate quantitatively that the near-wall
turbulence mechanism depends only on the structures near the wall, say around y+ < 100,
even at Reτ = 650. Therefore, more efficient feedback control algorithm can be developed by
considering near-wall dynamics at y+ < 100.

5 Conclusions

Direct numerical simulation of turbulent channel flow was made in order to assess the perfor-
mance of feedback control algorithms. KL decomposition is applied to examine quantitatively
the effect of interaction between near-wall and outer layer structures. The following conclusions
are derived:

1. The V-control scheme offers substantial drag reduction rate for all Reynolds numbers
examined, but the efficiency of the control is markedly deteriorated when the Reynolds
number is increased. It is mainly owing to the increase of pressure fluctuation on the
wall. The drag reduction rate and efficiency of the suboptimal control scheme are smaller
than those of V-control scheme at the same Reynolds number and power input.

2. The KL modes around y+ = 20, which corresponds to the near-wall streamwise vortices,
have large contribution not only to the Reynolds stress but also to the mean wall shear
stress at Reτ = 110. However, the contribution of the KL modes away from the wall
becomes larger with increasing Reynolds number.

3. When Reτ = 110, most of the turbulence energy is generated in the KL subgroups around
y+ = 20 and redistributed toward/away from the wall. On the other hand, when the
Reynolds number is increased, the nonlinear interaction among the inner layer structures
(y+ < 100) acts as the energy transfer toward the wall. The direct interaction between
inner (y+ < 100) and outer (y+ > 100) layers is inactive even at Reτ = 650. Therefore,
coherent structures at y+ < 100 should be manipulated in efficient feedback control
scheme for higher Reynolds number flows.
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