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The overpotential in a three-dimensional Ni-YSZ anode model 
structure obtained by a dual-beam focused ion beam-scanning 
electron microscope is predicted by lattice Boltzmann method. 
Gaseous, ionic and electronic transport equations with 
electrochemical reaction at the three-phase boundary are solved 
with an assumption of local equilibrium in the solid oxide. The gas 
transport is modeled by a so-called dusty gas model. The 
numerical simulation is performed under the current density 
conditions of 0.01, 0.1, 0.3 and 0.7 A/cm2. Three-dimensional 
electrochemical potential distributions inside a test anode 
microstructure are presented. The proposed method can be used for 
predicting SOFC electrode polarization. 
 

Introduction 
 
Solid oxide fuel cells (SOFCs) are a most powerful candidate for the future energy 
systems, because of their high efficiency and fuel flexibility (1). Anode porous 
microstructures are known to have significant effects upon the cell performance and 
durability of SOFCs. However, the quantitative relationship between the anode 
microstructure and the polarization resistances has not been fully investigated. Recently, 
direct measurements of three-dimensional SOFC electrode microstructures have been 
reported using focused ion beam scanning electron microscopy (FIB-SEM) (2-5) and X-
ray computed tomography (XCT) (6). In addition to these experimental approaches, a 
numerical simulation tool for predicting electrode performance in actual microstructures 
is strongly demanded. 

In the present study, actual anode three-dimensional microstructure obtained by a 
dual-beam focused ion beam-scanning electron microscopy (FIB-SEM) (7) is used for 
numerical simulation. The anode overpotential is calculated by the lattice Boltzmann 
method (LBM) (8), and the predicted overpotential is compared with the experimental 
data (9) for validation. Furthermore, the three-dimensional distribution of oxygen ion 
electrochemical potential is presented. 
 

Reconstructed Microstructure 
 
An electrolyte supported button cell is used in the present study (9). The Ni-8YSZ ratio is 
50:50 vol.%. Cross-sectional images (26 nm/pixel) are obtained at a 62 nm interval by a 
dual-beam focused ion beam-scanning electron microscopy (FIB-SEM, Carl Zeiss 
NVision 40) (7).  The volume size is 18.60 × 8.43× 6.20 µm3. Pore, Ni and YSZ phases 
are distinguished by their brightness values. Then, three-dimensional microstructure is re-
meshed to 62 nm cubic voxels for the numerical analysis.  



 
 

Figure 1.  Phase distinguished microscopy image, white: Ni, gray: YSZ, black: pore. 

 
 

Figure 2.  Reconstructed Ni-YSZ anode microstructure, gray: Ni, black: YSZ. 
 

Figure 1 shows an example of the phase distinguished cross-sectional image, while the 
reconstructed three-dimensional microstructure is shown in Figure 2. 
 

Numerical Method 
 
Computational Domain 

 
For securing a sufficiently large electrode thickness, five mirrored FIB-SEM 

structures is repeated in the z direction. The electrolyte is located at z = 0 µm, and the 
current collector (CC) is assumed at z = 31 µm. Thicknesses of electrolyte and CC layers 
are 1.302 µm and 0.62 µm, respectively. The resultant computational domain is 
represented in Figure 3. 

 
Governing Equations 

 
Gaseous, electronic and ionic diffusion equations are solved inside each of the 

obtained three-dimensional Ni, YSZ and pore phases. In the gaseous phase, hydrogen and 
steam diffusion is solved based on a dusty gas model (DGM) (10). When constant total 
pressure is assumed, DGM is written as follows: 
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yi is the molar fraction and 
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Ni  is the molar flux. Subscripts i and j present gas 
species, such as hydrogen and steam. Graham’s law is led from Eq. [1] as: 
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Figure 3.  Schematic of computational domain, gray: Ni, black: YSZ. 
 
Therefore, the diffusion equation of hydrogen is expressed as: 
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where 
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CH2
 is the molar concentration of hydrogen gas, and 
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In Eq. [3], 
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DH2 ,H2O
 and 
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DH2 ,k
 represent the binary and Knudsen diffusion coefficients, 

respectively, and they are given as: 
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The mean pore radius is assumed as r = 0.75 µm in the present study, while 
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ΩD  is the 
collision integral given as: 
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TABLE I.  Gas Properties. 

Substance M [g/mol]  ζ [Å] ε/k [K] 
H2 2.016 2.93 37 
H2O 18.015 2.65 356 

 



TABLE II.  Numerical Conditions. 
Properties Value 
Operating temperature T [K] 1273 
Total pressure p [Pa] 1.013×103 
Fuel composition (H2:H2O) [mol%] 98.8:1.2 
Electronic conductivity 

€ 

σ e−
 [Sm-1] (11) 3.27×106-1065.3T 

Ionic conductivity 

€ 

σO2−
 [Sm-1] (12) 3.34×104 exp(-10300/T) 

Gibbs free energy  [J/mol] -177.99×103 
 
When calculating the binary diffusion coefficient, a intermolecular force constants 

€ 

ζ  is 
taken as an arithmetic mean of 

€ 

ζH2  and 
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ζH2O . Geometric mean of 
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εH2  and 
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εH2O  is used for 

€ 

ε. The gas parameters are shown in Table I. 
Assuming that Ni and YSZ are perfect electronic and ionic conductors, the following 

equations are solved in these phases: 
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where 

€ 

˜ µ e−  and 

€ 

˜ µ O2−  are the electrochemical potentials of electron and oxygen ion, 
respectively. 

The reaction current 

€ 

ireacin the R.H.S. of Eqs. [3], [8] and [9], which is defined at TPB, 
is calculated from the Butler-Volmer equation (13) as:  
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The lineal exchange current density i0 is fitted from the patterned anode experiments of 
DeBoer et al. (14) 
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The numerical conditions in this study are listed in Table II.  
 
Overpotential Calculation 

 
From the LBM calculation, the electron electrochemical potential 

€ 

˜ µ 
e −

 in the Ni phase, 
the oxygen ion electrochemical potential 

€ 

˜ µ 
O 2−  in the YSZ phase and the oxygen chemical 

potential 

€ 

µO  in the gaseous phase are obtained. The overpotential is defined as the 
voltage difference between the reference electrode (RE) and the working electrode (WE): 
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where 

€ 

˜ µ e− ,RE/S  and 
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˜ µ e− ,WE/S  are the electron electrochemical potentials at the surfaces of 
RE and WE, respectively. Local activation overpotential 

€ 

ηact  at TPB is obtained by 
subtracting ohmic losses from the total overpotential. Figure 4 shows a schematic of the 
local activation overpotential, which is written as follows: 
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In Eq. [13], the local equilibrium is assumed inside the electrolyte at the electrolyte/RE 
interface (15): 
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The total overpotential of anode 

€ 

ηanode is obtained by subtracting ohmic losses of current 
collector (CC), electrolyte and reference electrode with an assumption of the same gas 
composition at CC and RE as follows: 
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Figure 4.  Schematic of local activation overpotential at TPB. 



 
TABLE III.  Total and connected TPB lengths. 

Properties Value 
TPB length [m] (Total) 1.26×10-2 
TPB length [m] (Connected) 7.61×10-3 
TPB density [m/m3] (Total) 2.58×1012 
TPB density [m/m3] (Connected) 1.56×1012 

 
Three Phase Boundary Length 

 
If neighboring four voxels are composed of three different phases, with diagonal 

voxel phases not being the same, the line segment surrounded by the four voxels is 
defined as a three phase boundary. Then, triangles are defined by the neighboring three 
midpoints of the three phase boundary segments. Finally, three phase boundary length is 
calculated as the distance between the centroids of these triangles (7). Table III shows the 
TPB length and density. In this table, a connected TPB is one of which the gaseous and 
Ni phases are connected to the current collector while at the YSZ phase to the electrolyte. 
The percentage of connected TPB is about 60 % of the total TPB length. 

 
Computational Scheme 

 
The LBM (8) is used to solve Eqs. [3], [8] and [9] in each phase. For the 3D LBM 

simulation, D3Q15 (i = 1-15) or D3Q19 (i = 1-19) models are commonly used. However, 
it has been shown that, in the case of simple diffusion simulation, D3Q6 (i = 1-6) model 
can be used with a slight loss of accuracy (16). So, the D3Q6 model is used in this study. 
The LB equation with the LBGK model in the collision term is written as follows: 
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In Eq. [16], 
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fi  represents the density distribution function of gas, electron or ion with a 
velocity 
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c i in the i-th direction, and 
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fi
eq  is the Maxwellian local equilibrium distribution, 

 

€ 

fi
eq x,t( ) =

1
6

f i
i=1

6

∑ x,t( ) .    [17] 

 
The relaxation time  is a function of diffusion coefficient D, voxel size Δx and time step 
Δt and it given as: 
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In the present study, the time step Δt is chosen so that the relaxation time becomes 
t*=0.99. However, the DGM diffusion coefficient is not constant in the gaseous phase. So 
the relaxation time is changed according to the DGM diffusion coefficient. The last term 
of Eq. [16] is a production term calculated from the reaction current density 

€ 

ireac . 
Adiabatic boundary condition is assumed at the boundaries of x = 0, 8.43 µm and y = 0, 
6.2 µm. At the current collector surface, constant gas composition (Dirichlet boundary) is 
applied. Constant electronic and ionic current flux conditions (Neumann boundary) are 



imposed on the current collector and electrolyte boundaries, respectively. A no-flux 
boundary is imposed on the boundary of each phase in the porous media by applying the 
halfway bounceback scheme with a second-order accuracy (17). 
 

Results 
 
The predicted total overpotential 

€ 

ηanode is compared with the experimental data (9) in 
Figure 5. Current densities in LBM are changed as 0.01, 0.1, 0.3 and 0.7 [A/cm2]. As 
seen in this figure, the prediction agrees very well with the experimental data. However, 
it is reported that domain size of the present sample is not sufficiently large for 
calculating effective conductivities of Ni and YSZ phases (7). Thus, effect of 
computational domain size should be carefully investigated, which remains as a future 
task. The electrochemical potential distribution of oxygen ion in the YSZ phase is shown  
 

 
Figure 5.  Comparison of predicted overpotential with the experimental data (9). 

 

 
 
Figure 6.  Distribution of oxygen ion electrochemical potential  in YSZ phase.  

(a) y = 4.34 µm, (b) z = 4.96 µm.  



in Figure 6. Figure 6(a) clearly shows the potential dropping from the electrolyte side to 
the current collector side. The potential distribution is not uniform in the x-y cross section 
as shown in Figure 6(b). This can be attributed to the non-uniform oxygen ion transport 
path through the YSZ phase, and also to the nonuniformity of distributed TPBs. 
 

Conclusions 
 
The anode overpotential and potential distributions in a three-dimensional microstructure 
reconstructed by FIB-SEM images are solved by using LBM. The predicted anode 
overpotential shows good agreement with the experimental data. The oxygen ion 
electrochemical potential distribution is not uniform in the x-y cross section. This can be 
attributed to the non-uniform oxygen ion transport path through the YSZ phase, and also 
to the nonuniformity of distributed TPBs. 
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