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ABSTRACT

A simple control algorithm to determine wall de-

formation with wall variables is investigated based on

physical arguments of turbulent coherent structure near

the wall. It is found that the spanwise gradient of

wall shear stresses are good indicators of strong quasi-
streamwise vortex accompanied by the meandering of

streak.

The performance of the proposed feedback control

with wall variables and using arrayed deformable actu-

ators is examined by using direct numerical simulation

of turbulent channel 
ow. The mean friction drag is

found to be reduced by 10%.

INTRODUCTION

From the view point of saving power and protect-

ing the environment, it is strongly desired to develop
e�cient turbulence control techniques for drag reduc-

tion and heat transfer augmentation. Among various

methodologies, active feedback control attracts much
attention because of its large control e�ect with small

control input (Moin & Bewley, 1994).

Choi et al. (1994) applied local blowing and suction

on the wall of turbulent channel 
ow so that the wall-
normal velocity induced by the quasi-streamwise vortex

(QSV; hereafter) should be attenuated. They obtain

30% drag reduction in their direct numerical simulation
(DNS). Bewley et al. (1993) employed sub-optimal con-

trol theory (Choi et al., 1993) in order to optimize wall

blowing/suction distribution and obtain similar results.

Although their algorithm needs the 
ow variables inside

the 
ow domain to be known, Lee et al. (1997, 1998)

have recently developed control algorithms, in which
only the variables on a wall surface are required based

on neural networks and sub-optimal control theory.

In the present study, an alternative control algorithm

using only wall variables is investigated based on phys-

ical arguments. Since coherent structures, especially

QSV play a dominant role in near-wall turbulent trans-

port mechanisms ( Robinson, 1991; Kasagi et al., 1995),

an e�cient control is expected to be established through
selective manipulation of those structures.

Sensors and actuators for turbulence active control

should have the same length and time scales as those
of the near-wall coherent structures. Recently, pro-

totypes of distributed micro devices have been fabri-

cated with the aid of microelectromechanical systems
(MEMS) technology (Ho & Tai, 1998).

Among many types of actuators, wall deformation is

considered to be one of the most promising candidate,
because of its robustness against the hostile environ-

ment. Carlson & Lumley (1996) employed a Gaussian-

shaped bump elongated in the spanwise direction with
its maximum height of 12 viscous length in a minimal

channel 
ow. They found that when the bump is raised

underneath high-speed region, it lifts the faster moving

uid away from the wall, and thus the friction drag is

decreased as much as 7%. However, the e�ect of wall

motion on the near-wall coherent structures and hence
the friction drag mechanism remains to be resolved.

The objectives of the present study are to evaluate

arrayed wall deformation actuators for drag reduction
and to develop a control algorithm using only wall vari-

ables based on the dynamics of near-wall coherent struc-

ture. For this purpose, we employ DNS of turbulent
channel 
ow with deformable walls.

NUMERICAL PROCEDURE

The 
ow geometry and the coordinate system are

shown in Fig. 1. The governing equations are the in-
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Figure 1. Flow geometry and coordinate system.

compressive Navier-Stokes equations and the continu-
ity equation. The wall deformation is described with a

boundary-�tted coordinate system for moving bound-
ary. Periodic boundary conditions are employed in the

streamwise (x�) and spanwise (z�) directions, while

non-slip boundary condition is imposed on the top and
bottom deformable walls.

A modi�ed Crank-Nicolson type fractional-step

method (Choi & Moin, 1994) is used for the time
advancement, while a second-order �nite di�erence

scheme is employed for the spatial discretization of both


ow variables and metrics on a staggered mesh (Mito
& Kasagi, 1998). The pressure Poisson equation is

solved with the multi-grid method (Demuren & Ibra-

heem, 1998). Successive over relaxation (SOR) method
is adopted in the �nest and middle meshes, whilst an

incomplete LU conjugate gradient squared (ILUCGS)

method in the coarsest mesh.

The size of the computational volume is 1:25�� in

the streamwise direction and 0:375�� in the spanwise

direction (where, � is the channel half width), which
correspond to about 590 and 180 viscous length scale,

respectively. It is about 2:5 and 1:5 times larger than

the so-called minimal 
ow unit (Jim�enez & Moin, 1991).
Hereafter, all the parameters with a superscript + rep-

resent quantities non-dimensionalized by the friction ve-

locity u� in the unactuated channel 
ow and the kine-

matic viscosity �.

The number of grid points is 48, 97 and 48 in the

x�; y� and z�directions, respectively. Uniform meshes

are used in the x� and z�directions with spacings

4x+ = 12 and 4z+ = 3:7. A non-uniform mesh with a

hyperbolic tangent distribution is used in the y� direc-

tion. The �rst mesh point away from the wall is given

at y+ = 0:25.

The computational time step is 0:33�=u2� . The simu-

lation is performed under the constant 
ow rate condi-

tion throughout the present study. The Reynolds num-
ber based on the bulk mean velocity Ub and the channel

width 2� is 4600 (about 150 based on u� and � for the

unactuated turbulent channel 
ow). An instantaneous

ow �eld of a fully-developed turbulent channel 
ow

was used for the initial condition.
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Figure 2. Time traces of mean pressure gradient and

the rms values of yw and vw.

Figure 3. Instantaneous wall deformation (t+ = 630).

Flow : left to right, Black to Gray : y+w = �2 to 2.

ACTIVE CANCELLATION BY WALL DE-

FORMATION

In the �rst stage of the present study, a simple

feedback algorithm is employed, in order to evaluate
the e�ect of wall deformation in drag reduction and

estimate the typical spatio-temporal scale of the defor-

mation. In the same manner as the active cancellation
control (Choi et al., 1994), the wall velocity, vw, is de-

termined as follows:

v
+
w (tn+1) = �

�
v
+
s (tn)� << v

+
s (tn) >>

�
�0:31y+w (tn) ;

(1)
where tn denotes the time step, vs is the wall-normal

velocity at y=� = 0:1 (y+ � 15), while yw is the dis-

placement of the wall. The double bracket << � >>

denotes an ensemble average of quantity � in the x� z

plane at each time step, and superscript n is the time

step. The second term of the right hand side of Eq. (1)

is a damping term to suppress excessive wall deforma-

tion.

Time trace of the volume-averaged streamwise pres-
sure gradient, which is normalized by that in the un-

actuated case is shown in Fig. 2. The friction drag

is decreased to as large as 28% at t+ = 2190 with a

long-term 
uctuation, and the mean drag reduction rate

during t+ = 0 � 5000 is about 10%. As also shown in

Fig. 2, the rms values of the wall displacement and
the wall velocity are 1:0�=u� and 0:15u� , respectively.

Wall roughness with its size less than y+ = 5 is catego-

rized as hydraulically smooth (Schlichting, 1960), and
may not a�ect much to the turbulence coherent struc-

ture. On the other hand, the rms value of the wall



Table 1. Four events at the edge of meandering streaks.

Event @u0=@x @u0=@z

E1 Positive Positive

E2 Negative Positive

E3 Negative Negative

E4 Positive Negative

E1

E3

High-Speed Region

E4

E2

x

z

High-Speed Region

High-Speed Region

High-Speed RegionLow-Speed Streak Low-Speed Streak

Figure 4. Detection of streak meandering.

velocity is in the same order of that of the wall-normal

velocity 
uctuation at y+ = 10. According to Choi

et al. (1994), when the blowing/suction from the wall
is employed exactly opposite to the wall-normal veloc-

ity at y+ = 10, the friction drag reduced signi�cantly.

Therefore, the drag reduction presently obtained is due
to the wall-normal velocity of the wall rather than the

displacement of the wall. Note that the displacement

and the velocity of the wall deformation in the present
study are much smaller than those of Carlson & Lumley

(1996), which are 12:0�=u� and 1:0u� , respectively.

Figure 3 shows instantaneous wall deformation. It

is evident that the deformation is much elongated in

the streamwise direction. The typical scales estimated
from the two-dimensional (x � z) spectrum of the wall

velocity vw are (m+
vx;m

+
vz) = (300; 45), the latter of

which is about half the mean spanwise spacing of the
near-wall streaks (not shown here).

DETECTION OF QUASI-STREAMWISE

VORTEX BY SENSING WALL VARIABLES

It is now evident that wall deformation determined
by the active cancellation control scheme is e�ective in

drag reduction, once the wall-normal velocity inside the


ow domain is given. However, it is impractical to mea-

sure 
ow variables at many points away from the wall,

especially right above the deforming wall actuators. In

this section, a new algorithm to determine the wall ve-

locity based on the information obtained by wall sen-

sors is proposed from the argument on the dynamics of

near-wall coherent structures.

It is well known that the near-wall streaky structure

does not always 
ow straight in the streamwise direc-
tion, but often meanders in the spanwise direction. Jo-

hansson et al. (1991) showed by using a conditional

average that the turbulent production was very large

near the streaky structures asymmetric in the spanwise

direction. Hamilton et al. (1995) pointed out that the

QSV and the streaky structure had close dynamical
relationship, and the meandering plays an important

role in a temporally quasi-cyclic process of regenera-
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Figure 5. Conditional-averaged streamwise velocity

contours at y+ = 15. (a) event E1, (b) event E2.

tion. Jeong et al. (1997) proposed a schematic model
of the QSV alternatively tilting in the x� z plane with

the meandering of the near-wall low-speed streak.

Figure 4 shows a schematic diagram of streaks me-
andering in the spanwise direction. Depending on the

signs of velocity gradients @u0=@x and @u0=@z, the edges

of meandering streaks can be grouped into four events
as tabulated in Table. 1. Note that E1 and E4, and, E2

and E3 are respectively mirror symmetry in the span-

wise direction.

In order to examine 
ow characteristics for each

event, conditional averages of fully-developed plane
channel 
ow are calculated, given the condition of the

sign of @u+=@x+ and @u+=@z+ at y+ = 15. A thresh-

old of 0:32 is used for both gradients to capture strong
meandering phenomena.

Figure 5 shows contours of conditional-averaged

streamwise velocity < u0+ > at y+ = 15 for events E1
and E2. Contours of negative < u0+ > corresponding

to the low-speed streak are elongated in the streamwise

direction, and tilted in the spanwise direction in both

events. The detection point (at �x+ = �z+ = 0) cor-

responds to the upstream and downstream edges of the

streak in E1 and E2, respectively, as depicted in Fig. 4.

Figure 6 shows contours of conditional-averaged

streamwise vorticity < !+x > at y+ = 15 for events
E1 and E2. In event E1, a large peak in !+x exists at

the detection point. Thus, QSV should often appear

with event E1. On the other hand, the magnitude of
!x is very small in event E2. The present result is in

accordance with the conceptual model proposed by Jo-
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Figure 6. Conditional-averaged streamwise vorticity

contours at y+ = 15. (a) event E1, (b) event E2.
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eng et al. (1997) showing that QSV is located on the

upstream side of meandering low-speed streak.

The equation of streamwise vorticity !+x can be writ-
ten as follows :

D!+x
Dt+

= !
+
x

@u+

@x+
�
@w+

@x+
@u+

@y+
+
@v+

@x+
@u+

@z+
+r2

!
+
x ; (2)

where the �rst term of the right hand side of Eq. (2)
is the stretching term, while the second and the third

correspond to tilting and twisting terms, respectively.

Since (@w=@x) � (@u=@y) is the largest term in Eq. (2),
!x is produced by the tilting of !y in its early stage

(Brooke & Hanratty, 1993). Once !x is formed, how-

ever, the stretching terms may be dominant, since !x
has a �nite absolute value (Sendstad & Moin, 1992).

Therefore, the peak in !x accompanied with event
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Figure 8. Contours of streamwise vorticity at y+ = 15,

given the conditions @�+u =@z
+ > 0:035 and

@�+w =@z
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E1 corresponds to the large production of !x by the
stretching term !x � (@u=@x), since @u=@x is positive.

For event E2, @u=@x is negative, so that the magnitude

of !x should be decreased. Thus, the streak meander-
ing substantially contributes to the evolution of !x and

the regeneration mechanism of the QSV.

It is now clear that the meandering of streaks has
an important role in the dynamics of coherent struc-

ture, and it might be possible to detect strong QSV

by measuring the 
ow parameters on the wall. Al-
though it is not shown here, we tested several candi-

date parameters for events E1 � E4, and found that the

wall shear stress 
uctuations �+u (� @u0+=@y+jw) and
�+w (� @w0+=@y+jw) are good indicators. The condition

is chosen as @�+u =@z
+ > 0:035 and @�+w =@z

+ < �0:005.

The contours of conditional-averaged streamwise ve-
locity 
uctuation at y+ = 15 are shown in Fig. 7. Al-

though the tilting angle of the streak is slightly smaller
than that obtained with the condition at y+ = 15 in

Fig. 5, streak meandering corresponding to event E1 is

well captured at a location of 4x+ :=: 50 downstream
from the detection point. There is also captured a large

positive peak of !+x at y+ = 15 in the region where the

streak meanders as shown in Fig. 8.

Figure 9 shows the conditional-averaged wall-normal

velocity < v0+ > at y+ = 15, given the some wall shear
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Figure 10. Arrangement of deformable actuators.
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Figure 11. Time trace of mean pressure gradient.

stress conditions. Positive and negative peaks aligned
in the spanwise direction, which respectively correspond

to the ejection and sweep motions, are observed. The

spanwise distance of the positive and negative peaks is
about 30�=u� , which is the same dimension with the

mean diameter of QSV (Robinson, 1991). Therefore,

the wall deformation for the active cancellation should
be determined by using @�u=@z and @�w=@z in such a

way that the wall velocity would be opposite to the
wall-normal velocity at y+ = 15 shown in Fig. 9.

Lee et al. (1997, 1998) showed that wall blowing=

suction roughly proportional to @�w=@z can reduce drag

signi�cantly. The present control scheme based on the

dynamics of the near-wall coherent structures is similar

to their algorithm in this sense. However, the location

for actuation is about 50�=u� downstream of the sens-

ing location, and this fact would be advantageous in

real applications since actuators can be separated from

sensors.

FEEDBACK CONTROL WITH ARRAYED

DEFORMABLE ACTUATORS

Figure 10 shows a proposed arrangement of shear
stress sensors and deformable actuators. Since the

conditional-averaged wall-normal velocity distribution

for event E1 exhibits a pair of positive and negative
peaks aligned in the spanwise direction as shown in

Fig. 9, each actuator is assumed to deform in a si-
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Figure 12. Production term in the streamwise

vorticity equation.
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nusoidal shape in the spanwise direction. The spanwise

dimension of the actuator is chosen as m+
z = 58:9, so

that the distance between the peak and trough is about

30�=u� . A shear stress sensor is assumed to be located

at 50�=u� upstream from the center of each actuator.
In the present study, 6�3 (streamwise � spanwise) ac-

tuators are arranged with a regular pitch on both walls

of the channel.

Each sensor measures spanwise gradients of shear

stresses, @�u=@z and @�w=@z. When @�w=@z is nega-
tive, the maximum wall velocity at the peak= trough of

the actuator vm is determined by:

v
+
m(tn+1) = � tanh

�
@�+u (tn)

@z+
=�

�
� 
y

+
m(tn); (3)

where ym is the wall displacement at the peak= trough,

and �; �; and 
 are control parameters, respectively.

The wall velocity of each grid point on the actuator is
given by

v
+
w (tn+1) = v+m(tn+1)� exp

�
�
(x+�x+c )

2

�2
x

�
(z+�z+c )

2

�2
z

�



� sin
h
2�(z+�z+c )

m
+
z

i
; (4)

where xc and zc denote the location of the center of

the actuator. The parameters are determined through

preliminary computations, and chosen as � = 1:39; � =
0:05; 
 = 0:31; �x = 0:165m+

x , and �z = 0:185m+
z , re-

spectively.

Figure 11 shows a time trace of the volume-averaged

streamwise pressure gradient. A maximum drag reduc-

tion rate of 18% is obtained at t+ = 530. The mean
drag reduction rate during t+ = 0 � 530 is about 10%.

Therefore, the present control scheme with arrayed ac-

tuators should provide almost the same control results
as the simple feedback law with arbitrary wall deforma-

tion shown in Fig. 2.

Although it is not shown here, all components of the

Reynolds stresses are decreased near the wall, and the

viscous sublayer is thickened, which is often observed
in drag reducing wall turbulence.

Figure 12 shows the production terms in Eq. (2).
The stretching term !+x � (@u+=@x+) is selectively de-

creased near the wall. This is because the wall defor-

mation with the present control algorithm is large near
the meandering of streaks, where the stretching term is

dominant.

Figures 13 and 14 show instantaneous contours of

v0+ at y+ = 15 and v+w , respectively. It is found from

these �gures that the present control method can pro-
vide wall velocity opposite to most strong vortices, al-

though, the correlation between v0+ at y+ = 15 and v+w
is about �0:4. Therefore, further optimization of con-
trol parameters would be possible to obtain larger drag

reduction.

CONCLUSIONS

DNS of turbulent channel 
ow was made to eval-

uate feedback control with arrayed deformable actua-

tors. A new realizable control method based on physical
arguments of the turbulent coherent structures is pro-

posed. The quasi-streamwise vortex accompanied with

streak meandering is detected by sensing shear stress

gradients at the wall. A pair of strong wall-normal

velocity components aligned in the spanwise direction

at about 50 viscous length downstream from the sens-

ing location are successfully captured by employing the

combined conditions of @�u=@z and @�w=@z on the wall.

The mean friction drag is reduced by 10% with the ar-
rayed actuators, of which deformation impede the wall-

normal velocities captured.
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