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Abstract

We propose a new suboptimal control law for drag reduction in wall-turbulence, which
requires the streamwise wall-shear signal only. The cost function is designed to reduce the
near-wall Reynolds shear stress that is directly related to the turbulent skin friction drag.
The suboptimal solution to minimize the cost function is analytically derived by using the
procedure proposed by Lee et al. (1998). Direct numerical simulation of turbulent pipe
flow shows that the friction drag can be successfully reduced by the derived control law.
Moreover, the sign of Reynolds shear stress in the near-wall layer is found to be reversed
with the present control.

Keywords: Turbulence; Control; Control theory; Drag reduction; Direct numerical simula-
tion; Reynolds shear stress.

1 Introduction

For successful development of an active feedback control system for drag reduc-
tion in wall-bounded turbulent flow, the effectiveness of the control scheme used as
well as the performance of the hardware components such as sensors and actuators
is of great importance.

Control schemes may be classified into two types, i.e., explicit and implicit
schemes. The explicit scheme is one in which the control input of the actuator i,
φi, is explicitly given by a function of sensor signals. On the other hand, the im-
plicit scheme, such as the optimal control (e.g., Bewley et al., 2001) only describes
a relation to be satisfied (i.e., a cost function to be minimized) and requires iter-
ative procedures to determine the control input. While such implicit schemes are
useful to explore the possibility of drag reduction control, the explicit schemes are
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suitable for implementation in the real applications, where real-time computation
of the actuation signal is required.

In the last decade, various explicit control laws were developed and assessed by
using direct numerical simulation (DNS) of controlled turbulent flow. Choi et al.
(1994) proposed so-called the opposition control, in which blowing/suction veloc-
ity is given at the wall so as to oppose the velocity components at a virtual detection
plane located above the wall. They attained about 25 % drag reduction by this ex-
tremely simple control law in their DNS of turbulent channel flow at low Reynolds
numbers. Subsequently, several attempts were made to develop control laws using
the information measurable at the wall. Lee et al. (1997) used a neural network and
found a control law in which the control input is given as a weighted sum of the
spanwise wall-shear stresses, (∂w/∂y)w, measured around the actuator. Series of
analytical solutions of the control input to minimize the cost function was derived
by Lee et al. (1998) in the framework of the suboptimal control. Their DNS of
channel flow at Reτ ' 110 showed 16-22% drag reduction when (∂w/∂y)w (in this
case, the control law is quite similar to that obtained by using the neural network
mentioned above) or the wall pressure, pw, was used as the sensor signal.

From a practical point of view, it is desirable to use the streamwise wall-shear
stress, (∂u/∂y)w, or pw (or both) as a sensor signal because a streamwise wall-shear
stress sensor (Yoshino et al., 2003) and a wall pressure sensor (Löfdahl et al., 1996)
of sufficiently small size and high frequency response are becoming available. For
the use of pw, in addition to the work by Lee et al. (1998), Koumoutsakos (1999)
presented a scheme to control the vorticity flux, and succeeded to reduce the friction
drag in his DNS.

For the use of (∂u/∂y)w, however, development of an effective control law seems
more difficult. Lee et al. (1998), who developed the above-mentioned (∂w/∂y)w-
and pw-based schemes, also presented a suboptimal solution based on (∂u/∂y)w.
The cost functional was given by
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`
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Here, φ denotes the control input, i.e., the blowing/suction velocity at the wall, A is
the area of wall, ∆t is the time-span for optimization, and ` is the price of control.
The power to the wall shear, α, was chosen as 1 or 2. The use of α = 1 led to a
trivial solution, i.e., φ = 0. With α = 2, the derived control law was expressed in
the Fourier space as

φ̂ =− ikx
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, (2)
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where the hat denotes the Fourier component, kx is the streamwise wavenumber,
k =

√
k2

x + k2
z is the two-dimensional absolute wavenumber in the streamwise-

spanwise plane, and i =
√
−1. Unfortunately, however, the friction drag was not

reduced.

When the dynamics of the system is described by linearized equations, as is
in this case, modification of any state variable ∆u due to the control input φ can
symbolically be expressed as

∆ûmn = fmn(φ̂mn) , (3)

where m and n are the mode numbers and f denotes a mapping function. This indi-
cates, a matter of course, that the interaction occurs only within the same wavenum-
ber. Based on this fact, the following analysis can be made on the cost functional
of Eq. (1).

(1) For α = 1, the second term of the cost function consists of (m,n) = (0,0)
mode only. Modification of this term is not possible under the zero net-flux
constraint usually imposed, i.e., φ̂00 = 0.

(2) For α = 2, the cost function is decomposed as
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where U denotes the mean velocity. Modification of the third term (i.e., the
mean wall-shear) is not possible due to the same reason as that for the case of
α = 1. The second term, i.e., the fluctuation component, is manipulatable.

As analyzed above, the non-trivial solution for the streamwise shear-based sub-
optimal control, i.e., Eq. (2), actually targets at suppression of the fluctuating com-
ponent of the streamwise wall-shear, but not the mean component. Although reduc-
tion of the friction drag may be attainable by choosing such a target, as is demon-
strated by Lee et al. (2001) who uses a two-dimensional linear-quadratic-Gaussian
(LQG)/loop-transfer recovery (LTR) controller, the resulting drag reduction effect
is merely a byproduct (Lee et al., 2001).

In the present study, we choose a manipulatable (i.e.,fluctuating) quantity which
is more directly related to the skin friction drag, i.e., the near-wall Reynolds shear
stress, as the target of suppression. By using intuitive and suboptimal approaches,
we attempt to develop a simple algebraic control law which requires (∂u/∂y)w only
as the sensor information.
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Fig. 1. Coorrdinate system. (a) channel; (b) pipe.

2 Control strategy

An incompressible flow is considered throughout the present study. Under the
condition of constant flow rate, the skin friction coefficient in fully developed chan-
nel and pipe flows, defined by C f = τ∗w/[(1/2)ρ∗U∗2

b ], can be decomposed as

C f =
12
Reb

+ 12
1�

0

2(1− y)(−u′v′) dy (5)

and

C f =
16
Reb

+ 16
1�

0

2r u′ru′z rdr , (6)

respectively (Fukagata et al., 2002). The coordinate system is shown in Fig. 1. Here,
all variables without superscript are those non-dimensionalized by the channel half
width, δ∗, or the pipe radius, R∗, and twice the bulk mean velocity, 2U∗

b , whereas di-
mensional variables are denoted by the superscript of ∗. The bulk Reynolds number
is defined as

Reb =
2U∗

b δ∗

ν∗
, or Reb =

2U∗
b R∗

ν∗
. (7)

The overbar (·) and prime (·′) denote the mean and fluctuation components of the
Reynolds decomposition. Equations (5) and (6) indicate that the skin friction coef-
ficient is decomposed into two parts. One is the laminar contribution given by the
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Fig. 2. Weighted Reynolds stress distribution of the opposition-controlled flow with differ-
ent detection plane heights yd .

well-known laminar solution, and the other is the turbulent contribution, which is
proportional to the weighted integral of Reynolds shear stress.

Figure 2 shows the weighted Reynolds stress appearing in Eq. (6) (i.e., 2r2u′ru′z),
in a pipe flow controlled by the opposition control law with different detection plane
heights, y+u

d . The difference in the areas covered by the controlled and uncontrolled
flow curves is directly proportional to the drag reduction by control. The maximum
drag reduction rate is obtained with y+u

d = 15. It is clear that most of the drag
reduction is attributed to the suppression of Reynolds stress in the near-wall layer.
As reported in the study of opposition control (Choi et al, 1994; Hammond et al.,
1998; Fukagata and Kasagi, 2003), the drag reduction rate decreases when too high
detection plane is used. The case of y+u

d = 23 shown in Fig. 2 corresponds the case
in which the drag recover to that of the uncontrolled flow. The Reynolds stress
at the half-height of the detection plane (y+u = 12), around where a formation of
virtual wall (Hammond et al., 1998) is expected, is still much lower than that of
the uncontrolled flow. The recovery of drag resulted by the use of higher detection
plane is rather due to the drastic increase of the Reynolds stress very near the wall.

Another observation in Fig. 2 is that the Reynolds stress far from the wall is
also suppressed, although the amount of suppression is relatively small. This can
be explained as an indirect effect due to a propagation of the change of Reynolds
stress in the near wall layer. In our recent study (Fukagata & Kasagi, 2003), where
the opposition control is applied partially to wall, the Reynolds stress profile near
the wall drastically changes due to the direct suppression at the beginning of con-
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Fig. 3. Schematic of the intuitive control scheme.

trolled region and the distribution far from the wall changes gradually following the
quick change in the near-wall region. Although the control input in that example is
switched on in space, a similar phenomenon is expected when the control is turn
on at a certain time to a fully developed uncontrolled flow.

The information above suggests that suppression of the near-wall Reynolds shear
stress is of primary importance in order to reduce the skin friction drag. Once the
near-wall Reynolds shear stress is suppressed, its propagation toward the outer layer
is also expected to result in an additional amount of drag reduction. Note that the
importance of Reynolds shear stress for drag reduction is pointed out also by Be-
wley and Aamo (2004), who independently derive an integral relation essentially
similar to Eq. (5).

3 Intuitive control

As is well known, the positive Reynolds shear stress (i.e.,−u′v′ > 0) near the wall
is a consequence of the dominance of the sweep/ejection motions, as is schemati-
cally drawn in Fig. 3a. Therefore, an intuitive control strategy in order to attenuate
the Reynolds stress in the vicinity of the wall is to give the blowing/suction veloc-
ity at the wall proportional to the local wall-shear fluctuation, so that blowing is
applied to the high-speed region and suction to the low-speed region (see, Fig. 3b).
Thus, with the intuitive control law, the control input (φ(x, z, t) = v(x,0, z, t) for a
channel and φ(θ, z, t) = ur(1,θ, z, t) for a pipe) can be expressed as

φ = α
∂u′

∂y

∣∣∣∣
w

or φ = α
∂u′z
∂r

∣∣∣∣
w

(8)
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for a channel or a pipe, respectively. Here, α is the amplitude coefficient that, if
dimensional, has a dimension of length.

4 Suboptimal control

4.1 Cost functional

In the intuitive control introduced above, the actuation signal is determined us-
ing only the sensor signal at the identical location. Namely, the modification of flow
due to the control input by the neighboring actuators is not accounted for. Such ef-
fects are properly taken into account by the suboptimal control procedure described
below.

First, we propose a cost functional J to be minimized as

Jc(φ) =
`

2A∆t
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t+∆t�

t

φ2 dt dS+
1

2A∆t
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for a channel flow and

Jp(φ) =
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t
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for a pipe flow, respectively. Here, φ denotes the control input, i.e., the blow-
ing/suction velocity at the wall, A is the area of wall, ∆t is the time-span for op-
timization, and ` is the price for the control.

The proposition is to minimize this cost functional under the linearized Navier-
Stokes equation. Since a very short time, ∆t, is considered here, the linearization is
done, similarly to Lee et al. (1998), by temporally discretizing the Navier-Stokes
equation so that the advection term does not affect the determination of control
input. Namely, by using an explicit scheme for the nonlinear terms and Crank-
Nicolson scheme for the linear terms for temporal discritization, the short time
dynamics of the system is approximated by the following set of equations:

∇ ·un+1 = 0 , (11)

un+1 = ∆t
[
−∇pn+1 +

2
Reb

∇2un+1
]
+ Fn , (12)
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where the superscripts of n and n + 1 denote the discrete time instances, and F is
the part explicitly integrated, i.e.,

Fn = un + ∆t
[
−∇ · (unun)+

2
Reb

∇2un
]

. (13)

The velocity boundary condition on the wall is

u|n+1
w = φ nw , (14)

where nw is the wall-normal unit vector.

4.2 Control law for channel flow

As mentioned in Introduction, our purpose is to develop a control law which uses
the streamwise wall-shear as the sensor information. Therefore, the Reynolds shear
stress above the wall (y = Y ) appearing in the cost function needs to be evaluated by
using the information on the wall. The Taylor-series expansions of the streamwise
and wall-normal velocities read

u′(Y ) = Y
∂u′
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w

+
Y2

2
∂2u′

∂y2

∣∣∣∣
w

+ O(Y3) (15)

and

v′(Y ) = φ+
Y 2

2
∂2v′

∂y2
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w

+ O(Y3) , (16)

respectively. The leading term for v′(Y) in the absence of the control input is on
the second order. With control, however, the zeroth-order term appears. By taking
the leading order term of the Taylor-series expansion, the Reynolds stress at y = Y
under control is approximated as

−u′v′(Y ) '−Yφ
∂u′

∂y
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w

. (17)

Substitution of Eq. (17) into Eq. (9) yields an approximated cost functional, i.e.,
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The control input, φ, that minimize the cost functional, Eq. (18), can be calcu-
lated analytically through the procedure proposed by Lee et al. (1998) as follows.
First, the Fréchet differentiation is applied to the cost functional, i.e.,

DJc

Dφ
φ̃ =

`
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φ̃+ φ
∂q
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w

)
dt dS . (19)

Here, the Fréchet differential is defined by

D f (φ)

Dφ
φ̃ = lim

ε→0

f (φ+ εφ̃)− f (φ)

ε
, (20)

and q is the differential state of the streamwise velocity, i.e.,

q =
Du
Dφ

φ̃ . (21)

Next, we consider a two-dimensional Fourier transform defined by

f = ∑
m

∑
n

f̂ exp(ikxx+ ikzz) , (22)

where f represents any variable and the hat denotes its Fourier coefficient. The
streamwise and spanwise wavenumbers are defined by kx = 2πm/Lx and kz =
2πn/Lz, respectively, i =

√
−1. This two-dimensional discrete Fourier transform

is applied to the approximated cost functional, Eq. (18), to yield

D̂Jc
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?
+ φ̂

∂̂q
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?∣∣∣∣∣
w

)
, (23)

where the subscript of ? denotes a complex conjugate and the indices for mode
numbers (mn) are omitted for notational simplicity. The modification of the stream-
wise velocity due to the perturbation field, q̂, that appears in Eq. (23) can be de-
termined by solving the Fréchet differential of the state equation (i.e., the lin-
earized Navier-Stokes equation). Since here we consider the same state equation
and boundary condition as those used by Lee et al. (1998), i.e., Eqs. (11)-(14), we
simply borrow their solution of q̂ that reads

q̂(y) =
ikx

k
φ̃
[

exp
(
−
√

k2 + γ2 y
)
− exp(−ky)

]
, (24)
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where k =
√

k2
x + k2

z and the parameter γ is defined by

γ =

√
2Reb

∆t
. (25)

From this solution, the complex conjugate of the wall-shear modification due to the
perturbation field can be calculated as

∂̂q
∂y

?∣∣∣∣∣
w

' γ
ikx

k
̂̃φ

?
(26)

where the same assumption as that used by Lee et al. (1998), i.e., k2 � γ2 is used.

Finally, by substituting, Eq. (26) into Eq. (23), we can find the suboptimal control
input that makes (DJc/Dφ)φ̃ = 0 for any φ̃, which can be expressed as

φ̂ = α

[
∂̂u
∂y

∣∣∣∣∣
w

+ γ
ikx

k
φ̂

]
, (27)

or, by isolating φ̂,

φ̂ =
α

1− i αγ kx/k
∂̂u
∂y

∣∣∣∣∣
w

. (28)

Here, the amplitude coefficient α (cf. Eq. (8)) is related to the predefined parame-
ters, ` and Y , by

α =
Y
2`

. (29)

The first expression, Eq. (27), suggests that this suboptimal control law is essen-
tially similar to the intuitive control, but with the correction term for the modifica-
tion of the flow field due to the control itself. It is worth mentioning that 1/γ can
be interpreted as the influential thickness in time ∆t (both non-dimensionalized by
δ∗ and 2U∗

b ) analogous to that in the Rayleigh’s problem. Therefore the product αγ
appearing in the second expression, Eq. (28) can be interpreted a ratio of control
amplitude to its influential thickness. (In dimensional space, too, α∗ = Y ∗/` and
γ∗ =

√
2/(ν∗∆t∗) makes the product α∗γ∗ a dimensionless number.) The differ-

ence from the intuitive control becomes larger when the control is strong, i.e., large
α, or when the momentum introduced by control during ∆t is diffused within a thin
layer, i.e., large γ.

10



K. Fukagata & N. Kasagi, Int. J. Heat Fluid Flow 25, 341-350 (2004)

-4 -3 -2 -1 0 1 2 3 4
j

-10-5 0 5 10 15 20 25 30

i

-1
-0.5

0
0.5

1
1.5

2

Wij / W00

Fig. 4. Normalized weights in the physical space (αγ = 73).

In the first step of the present derivation, the Reynolds shear stress above the wall
is approximated by using only the leading order term, see, Eq. (17). One may be
tempted to include also higher order terms for a better approximation. In that case,
however, the control law derived in a similar manner requires other information
such as pw and (∂w/∂y)w, too.

4.3 Weights in the physical space

The derived control algorithms can be transformed to the physical space through
the inverse discrete Fourier transform, i.e.,

φ̂ = Ŵ? ∂̂u
∂y

∣∣∣∣∣
w

=⇒ φk` = ∑
i

∑
j

Wi j
∂u
∂y

∣∣∣∣
w, k+i `+ j

, (30)

where Ŵ? is the function preceding ̂(∂u/∂y)w in Eq. (28). The subscripts to the
variable in the physical space, i, j, k and `, denote the discrete positions of a sensor
or an actuator, e.g., Wi j = W (i∆x, j∆z). Equation (30) indicates that the control
input of an actuator is given by a weighted sum of the streamwise wall shear around
it. Figure 4 shows the distribution of the weight, Wi j, normalized by W00 in the case
of αγ = 73. The weight distribution has different characteristics in the streamwise
and spanwise directions. It is symmetric in the spanwise direction and whereas
asymmetric in the streamwise direction.
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Fig. 5. Dependency of the distribution of weight on the parameter αγ. (a) streamwise dis-
tribution at j = 0; (b) spanwise distribution at i = 0

One dimensional weight distributions on the orthogonal axes, i.e., j = 0 and
i = 0, are depicted in Fig. 5 for different values of αγ. The streamwise distributions
are similar to curves of exponential decrease. The maximum weight appears at the
position right downstream of the actuator and its value is dependent on αγ. The
number of downstream sensors that should be accounted for is determined by the
parameter, αγ. On the other hand, the spanwise distribution is nearly independent
of the parameter αγ and it is similar to a negative second derivative.
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Note, if the weighting function in the Fourier space were

Ŵ? =
α

1− i αγ kx
(31)

(i.e., omitting the division by k), then the normalized weight in the physical space
would be

W(x)
W(0)

=





0 (x < 0) ,

exp
[
− x

αγ

]
(x ≥ 0) .

(32)

This relation may qualitatively explain the exponential-like decrease of the weight
in the streamwise direction.

4.4 Control law for pipe flow

The control law for a pipe flow can be developed similarly by using the Taylor-
series expansion of the near-wall Reynolds shear stress, i.e.,

u′ru′z(1−Y) = −Yφ
∂u′z
∂r

∣∣∣∣
w

+ O(Y2) . (33)

and the solution of q for pipe flow (Xu et al., 2002), i.e.,

q̂ = iρ̂w
kz∆t

2

[
Im(γr)
Im(γ)

− Im(kzr)
Im(kz)

]
, (34)

where

ρ̂w =− 2
∆t

[
Im(γ)

Im+1(γ)
+

Im(γ)
Im−1(γ)

]
ˆ̃φ
/

kp , (35)

and

kp = kz

[
Im+1(kz)

Im(kz)

Im(γ)
Im+1(γ)

+
Im−1(kz)

Im(kz)

Im(γ)
Im−1(γ)

−2
kz

γ

]
. (36)

Here, m is the azimuthal mode number and Im(r) denotes the m-th order modified
Bessel function, i.e., Im(r) = (−i)mJm(ir). The length is non-dimensionalized by
R∗, and hence kθ = (2πm)/(2πR)= m and k =

√
k2

z + m2. By this non-dimensionalization
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and by using the similar assumption as that made for channel, i.e., k2
z ,m2 � γ2, the

expression above is simplified as compared to the original version of Xu et al.
(2002).

Following the similar procedure as that for the channel flow, we obtain the con-
trol input, which reads

φ̂ =
α

1− i αγ κ(m, kz)

∂̂uz

∂r

∣∣∣∣∣
w

. (37)

The difference from the solution for channel flow is absorbed into the factor, κ(m, kz).
As can be imagined from Eqs. (34)-(36), the exact expression of κ(m, kz) is highly
complicated. However, under the condition of |m| � γ, the asymptotic expression
for the modified Bessel function, i.e.,

Im(γ) ' 1√
2πγ

exp(γ) , (38)

simplifies the expression of κ(m, kz), as

κ(m,kz) =

[(
1
2γ

+ 1
)

Im(kz)

I ′m(kz)
− 1

γ

]
, (39)
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Table 1
Number of grids (Nr,Nθ,Nz) and grid spacing (∆r, R∆θ, ∆z).

Nr Nθ Nz ∆r+u (R∆θ)+u ∆z+u

Finer grid 96 128 512 0.46 - 2.99 8.84 7.03

Coarser grid 48 128 256 0.95 - 6.11 9.03 14.4

where I ′m(r) is the radial derivative of Im(r). The parameter γ is usually much larger
than unity. In that case, Eq. (39) can be further simplified to result in

κ(m, kz) =
Im(kz)

I ′m(kz)
. (40)

The correlation between the wavenumber-dependent parts, i.e., kx/k for channel
and κ(m,kz) for pipe, is shown in Fig. 6. The correlation is nearly linear for higher
wavenumbers. As can be imagined from the geometrical difference, the largest de-
viation is observed at the lowest azimuthal wavenumber (m = 1).

The distribution of the weight in the physical space is found to be nearly the
same as that for the channel flow.

5 Performance test

Performance of the proposed control laws is assessed by DNS of turbulent pipe
flow. First, about 40 runs are performed for the present suboptimal control with
different values of the parameters α and γ.

The DNS code is based on the energy conservative finite difference method for
the cylindrical coordinate system. (Fukagata & Kasagi, 2002). The time integration
is done by using the low storage third-order Runge-Kutta/Crank-Nicolson scheme
(see, e.g., Spalart et al., 1991). The bulk mean velocity Ub is kept constant, and
the Reynolds number is Reb = 5300 (Reτ ' 180 for uncontrolled flow). The com-
putational domain has a longitudinal length of L = 20R and the periodic boundary
conditions are applied at both ends. The specification of the computational grid is
summarized in Table 1. The coarser grid system is used for the parameter study,
while the finer grid system is for accumulation of detailed statistics. It has been
verified in the DNS of opposition controlled flows that even the coarser grid system
used here is sufficient to evaluate the drag reduction rate (Fukagata and Kasagi,
2003).

Figure 7 shows the time-averaged drag reduction rate, RD, as a function of the
resulting amplitude of control input, φ+u

rms, for different values of αγ. Here, the su-
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Fig. 7. Drag reduction rate, RD (with the coarser grid, except for a finer grid computation
with αγ = 36 denoted by ’•’).

perscript of +u denotes the wall unit of the uncontrolled flow. The drag reduc-
tion rate increases with the increase of amplitude. Relatively large drag reduc-
tion rate was obtained when 15 ≤ αγ ≤ 146 with the values of α that result in
0.065 < φ+u

rms < 0.085. This amplitude is comparable to that of the opposition con-
trol with the detection plane height of y+u

d ' 10. The efficiency of the control is
slightly better with smaller value of αγ. For instance, amplitude of φ+u

rms ' 0.063 is
required to obtain 10 % drag reduction with αγ = 15, whereas φ+u

rms ' 0.079 with
αγ = 73. From the definition of α and γ, this deterioration for large value of αγ is
explained by that the approximation of Reynolds stress above the wall by the Taylor
expansion becomes inaccurate for large Y , as well as by that the control becomes
cheaper.

In Fig. 7, drag reduction rates only of the successful cases are plotted and the
cases in which the drag increased (and often the computation diverged) are ex-
cluded. For example, for αγ = 73 the drag was reduced by 11.5 % with φ+u

rms ' 0.08,
but the drag increased at a slightly stronger control due to instability in the near-
wall layer. In any cases examined with φ+u

rms > 0.085, the drag was not reduced.
The instability for large amplitude of control can be explained by the form of the
present control law. The first term in the right-hand-side of Eq. (27) is associated
with the flow information, but the second term is a function of the control input it-
self. Therefore, for too large φ, the control input is determined by itself regardless of
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Fig. 8. Joint probability density distribution of the streamwise and wall-normal velocity
fluctuations at y+u ' 5. (a) without control; (b) with the present suboptimal control.

the status of the flow. As the result, the system becomes unstable. The simulations
are also performed by dynamically adjusting the amplitude coefficient so that φrms
becomes constant in time. In those cases, the control amplitude can be increased
up to φ+u

rms ' 0.17. The drag reduction rate, however, decreases for φ+u
rms > 0.08

and the maximum drag reduction rate is unchanged from the cases of the constant
amplitude coefficient described above.

Figure 8 shows the joint probability density function (PDF) of the streamwise
and wall-normal velocity fluctuations near the wall (y+u ' 5) of the case computed
on the finer grid system, i.e., αγ = 36 and φ+u

rms ' 0.07. The joint PDF exhibits a
similar change to what we initially expected (Fig. 3). The sweep and ejection are
suppressed, whereas the low-speed inward and high-speed outward motions are
enhanced by the present control.

The profile of the Reynolds shear stress of the corresponding case is shown in
Fig. 9. Again, the near-wall Reynolds stress is suppressed with the present con-
trol as we initially intended. As can be seen from the comparison, the profile of
the present control is nearly the same as that of the opposition control (denoted as
v-control) with y+u

d = 5. A small difference between them can be noticed in the re-
gion of 0 < y+u < 5, where the sign of the Reynolds shear stress is reversed with the
present control. In Fig. 9, comparison is also made with the opposition control with
y+

d = 15, in which the Reynolds stress around 5 < y+u < 10 is mostly suppressed
to result in a higher drag reduction rate (' 25 %). The direct suppression with the
present control seems to occur merely in the region of 0 < y+u < 5. These compar-
isons suggest a possibility of further drag reduction by modification of control law
so that a largely negative Reynolds shear stress is created in the near-wall layer or
the Reynolds shear stress farther from the wall is directly suppressed.

Contours of the wall-shear stress fluctuation are depicted in Fig. 10. As is well
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Fig. 9. Reynolds shear stress.

known, a streaky structure of wall-shear can be observed in the uncontrolled flow.
With the present control, the wall-shear fluctuation is drastically reduced and it
forms somewhat circular structures. This change is slightly different from the re-
sults of most of the previous controls (e.g., Choi et al., 1994; Lee et al., 1998; Endo
et al., 2000; Lee et al. 2001) in which elongation of streaky structure was observed.
This circular structure becomes more pronounced as the increase of control ampli-
tude, which seems to be related to the above-mentioned instability for excessively
large values of φrms.

For the intuitive control scheme, Eq. (8) or γ → 0 limit of the present suboptimal
control law, the computation is very unstable and drag reduction is not observed
with any value of the parameter examined. Such unstable behavior is illustrated in
Fig. 11, in which time trace of φ of one sample actuator is plotted. For comparison,
similar time traces for the present suboptimal control and two suboptimal control
schemes by Lee et al. (1998), i.e., the streamwise wall shear-based control, Eq.
(2), and the spanwise wall shear-based control, φ̂ = i (kz/k) (∂ŵ/∂y)w, are also
shown. In all cases, the magnitude of control input is fixed at φ+u

rms = 0.08. It is clear
that two schemes that successfully reduce the drag (i.e., the present (−uv)-based
suboptimal control law and the (∂w/∂y)-based suboptimal control law give almost
constant control input in this short period of time (1 wall unit time), whereas those
do not reduce the drag give oscillatory control input. Note that the CFL number in
the near-wall region is less than 0.1 so that this instability is not a purely numerical
one. The instability is probably due also to the coupling between the dynamics of
the plant (i.e., fluid flow) and the controller.
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Fig. 10. Contours of streamwise wall-shear stress fluctuation, −(∂u′z/∂r)w. (a) Without con-
trol; (b) present control (αγ = 36) with φ+u

rms ' 0.063; (c) φ+u
rms ' 0.078. Increment is 0.1 wall

unit and negative contours are dashed.

6 Summary and conclusions

Based on the knowledge on the componential contribution to the skin friction
(Fukagata et al., 2002), an alternative cost functional for drag reduction, which
incorporate the near-wall Reynolds shear stress, was proposed in the framework of
the suboptimal control.

The control input to minimize that cost functional was analytically obtained by
using the method proposed by Lee et al. (1998). Only the streamwise wall shear
signal, which is the sole quantity usable in the physical experiment at this moment,
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Fig. 11. Time trace of control input of an actuator with different control schemes.

is required to determine the control input. Different from any other explicit control
laws previously proposed, the weighting function has a practically two-dimensional
distribution, which is asymmetric in the streamwise direction and symmetric on the
spanwise direction.

DNS of pipe flow at Reτ ' 180 with the present control law showed a clear
drag reduction effect, which could not be attained by the previous streamwise wall
shear-based suboptimal control law (Lee et al., 1998). As initially intended, the
Reynolds shear stress in the near wall layer can be successfully suppressed. The
modification of the profile is basically similar to that by the opposition control with
a low detection plane height. In addition, the sign of the Reynolds shear stress is
reversed in the region of 0 < y+u < 5.

Although the drag reduction rate attained by the present algorithm was small, the
result suggests that further drag reduction may be possible, if the structure farther
from the wall can be directly manipulated such as in the opposition control, or if
the Reynolds shear stress in the near wall layer can be made strongly negative. In
order to realize these ideas, one has to overcome the problem of instability, which
is revealed to be common to several unsuccessful control laws. The cause for this
instability presumably lurk in the coupling between the plant and the controller.
The details, however, should be further investigated.

20



K. Fukagata & N. Kasagi, Int. J. Heat Fluid Flow 25, 341-350 (2004)

Acknowledgment

This work was supported through the Project for Organized Research Combina-
tion System by the Ministry of Education, Culture, Sports and Technology of Japan
(MEXT).

References

Bewley, T.R., and Aamo, O.M., 2004. A “win-win” mechanism for low-drag
transients in controlled 2D channel flow and its implications for sustained drag
reduction. J. Fluid Mech. 499, 183-196.

Bewley, T.R., Moin, P., and Temam, R., 2001. DNS-based predictive control of
turbulence: an optimal benchmark for feedback algorithms. J. Fluid Mech. 447,
179-225.

Choi, H., Moin, P. and Kim, J., 1994. Active turbulence control for drag reduction
in wall bounded flows. J. Fluid Mech. 262, 75-110.

Endo, T., Kasagi, N., Suzuki, Y., 2000. Feedback control of wall turbulence with
wall deformation. Int. J. Heat Fluid Flow 21, 568-575.

Fukagata, K., Iwamoto, K, and Kasagi, N., 2002. Contribution of Reynolds stress
distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73-L76.

Fukagata, K. and Kasagi, N., 2002. Highly energy-conservative finite difference
method for the cylindrical coordinate system. J. Comput. Phys. 181, 478-498.

Fukagata, K. and Kasagi, N., 2003. Drag reduction in turbulent pipe flow with
feedback control applied partially to wall. Int. J. Heat Fluid Flow 24, 480-490.

Hammond, E.P., Bewley, T.R., Moin, P., 1998. Observed mechanisms for turbu-
lence attenuation and enhancement in opposition-controlled wall-bounded flows.
Phys. Fluids 10, 2421-2423.

Koumoutsakos, P., 1999. Vorticity flux control for a turbulent channel flow. Phys.
Fluids 11, 248-250.

Lee, C., Kim, J., Babcock, D., and Goodman, R., 1997. Application of neural
networks to turbulence control for drag reduction. Phys. Fluids 9, 1740-1747.

Lee, C., Kim, J. and Choi, H., 1998. Suboptimal control of turbulent channel
flow for drag reduction. J. Fluid Mech. 358, 245-258.

21



K. Fukagata & N. Kasagi, Int. J. Heat Fluid Flow 25, 341-350 (2004)

Lee., K.H., Cortelezzi, L., Kim, J., and Speyer, J., 2001. Application of reduced-
order controller to turbulent flows for drag reduction. Phys. Fluids 13, 1321-1330.
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