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A simple expression is derived of the componential contributions that different dynami-
cal effects make to the frictional drag in turbulent channel, pipe and plane boundary layer
flows. The local skin friction can be decomposed into four parts, i.e., laminar, turbulent,
inhomogeneous and transient components, the second of which is a weighted integral of the
Reynolds stress distribution. It is reconfirmed that the near-wall Reynolds stress is primar-
ily important for the prediction and control of wall turbulence. As an example, the derived
expression is used for an analysis of the drag modification by the opposition control and by
the uniform wall blowing/suction.

The frictional drag of a turbulent wall-bounded flow is usually much higher than that of a
laminar one. Owing to extensive research over the last several decades, we presently have a
common understanding that such large frictional drag is attributed to the existence of near-wall
vortical structure and the associated ejection/sweep events [1].

This important knowledge results in, for instance, dynamical argument-based control algo-
rithms for drag reduction in wall-bounded turbulent flows. Choi et al. [2] demonstrated in their
direct numerical simulation (DNS) that about 25 % drag reduction can be attained by a simple
algorithm, in which local blowing/suction is applied at the wall so as to oppose the wall-normal
velocity at 10 wall units above the wall. Later on, different control algorithms for drag reduction
have been tested with DNS and the drag reduction mechanism has been discussed based on the
statistics of the controlled flow and also the visualized turbulence structures[2–5].

However, the quantitative relation between the statistical information of the flow and the drag
reduction effect seems to remain not completely clear. In the present Letter, we derive a direct re-
lation between the skin friction coefficient and the Reynolds stress distribution for three canonical
wall-bounded flows, i.e., channel, pipe and plane boundary layer flows. Although the derivation
itself is simple and straightforward, the result is suggestive and useful for analyzing the effect of
the Reynolds stress on the frictional drag, especially for controlled flows.

First, we define several dimensionless quantities and averaging operators used. The Reynolds
averaged Navier-Stokes equation in the x direction for an incompressible plane channel flow shown
in Fig. 1a is given by

−∂p
∂x

=
∂
∂y

[
u′v′ − 1

Reb

∂u
∂y

]
+ Ix +

∂u
∂t

. (1)

Here, the overbar of f denotes an average of a quantity f in the homogeneous (z) direction, i.e.,

f (x,y, z, t) = f (x,y, t)+ f ′(x,y, z, t) . (2)
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FIG. 1: Flow geometry. (a) channel (half) and plane boundary layer; (b) pipe.

Hereafter, all variables without superscript are those nondimensionalized by the channel half
width, δ∗, and twice the bulk mean velocity, 2U∗

b , whereas dimensional variables are denoted
by the superscript of ∗. The bulk Reynolds number is defined as

Reb =
2U∗

b δ∗

ν∗
, (3)

where ν∗ is the kinematic viscosity. The pressure in Eq. (1) is normalized by the density, and Ix
contains the terms appearing when the flow is inhomogeneous in the streamwise direction, i,e.,

Ix =
∂(uu)

∂x
+

∂(u v)
∂y

− 1
Reb

∂2u
∂x2 . (4)

Presently, the following conditions are assumed:

(A) constant flow rate,
(B) homogeneity in the spanwise (z) direction,
(C) symmetry with respect to the center plane,
(D) u = w = 0 (i.e., no-slip streamwise/spanwise velocity) on the wall.

It is worth noting that no restriction is made for the wall-normal velocity at the wall. From con-
ditions (A) and (C), its mean should be zero (v(x,0, z, t) = 0), while its fluctuating part is not
necessarily zero (v′(x,0, z, t) �= 0). This enables use of the relation derived below to, for instance,
a flow controlled by blowing/suction with zero net flux, that is exemplified later.

Under the conditions above, integration of Eq. (1) over y gives the relation between the pressure
gradient and the skin friction coefficient, i.e.,

− ∂̃p
∂x

=
1
8

Cf (x, t)+ Ĩx , (5)
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where f̃ is the local bulk mean quantity, i.e.,

f̃ (x, t) =
Z 1

0
f (x,y, t)dy , (6)

and the local skin friction coefficient is defined as

Cf (x, t) =
τ∗w

1
2ρ∗U∗2

b

=
8

Reb

du
dy

∣∣∣∣
y=0

, (7)

Substitution of Eq. (5) into Eq. (1) results in

1
8

Cf =
∂
∂y

[
u′v′ − 1

Reb

∂u
∂y

]
+ I ′′x +

∂p′′

∂x
+

∂u
∂t

, (8)

where
f ′′(x,y, t) = f (x,y, t)− f̃ (x, t) . (9)

The relation for componential contributions of different dynamical effects to the local skin
friction coefficient can be obtained by applying triple integration, i.e.,

R 1
0 dy

R y
0 dy

R y
0 dy, to Eq. (8).

The first integration essentially gives the force balance, similar to the well-known linear relation
for stresses. The second is an integration that leads to the mean velocity profile. The third is akin
to obtaining the flow rate from the velocity profile. By using the definition of the the bulk mean
velocity, i.e., ũ =

R 1
0 u dy = 1/2, and by transforming multiple integrations to single integrations

by applying the integration by parts, it results in

1
2

= Reb

[
Cf

24
−
Z 1

0
(1− y)(−u′v′) dy

+
1
2

Z 1

0
(1− y)2

(
I ′′x +

∂p′′

∂x
+

∂u
∂t

)
dy

]
.

(10)

or, equivalently, by isolating Cf we obtain

Cf =
12
Reb

+12
Z 1

0
2(1− y)(−u′v′) dy

−12
Z 1

0
(1−y)2

(
I ′′x +

∂p′′

∂x
+

∂u
∂t

)
dy .

(11)

This equation indicates that the skin friction coefficient is decomposed into the laminar contribu-
tion, 12/Reb, which is identical to the well-known laminar solution, the turbulent contribution (the
second term), and the inhomogeneous and transient contribution (the third term). The turbulent
contribution is proportional to the weighted average of Reynolds stress, of which weight linearly
decreases with the distance from the wall. This fact quantitatively supports the observation in tur-
bulent channel flow[6] that the turbulence structure that appear closer to the wall than the position
of maximum Reynolds stress is most responsible for the frictional drag in wall turbulence.

A similar relationship can be derived also in the case of cylindrical pipe flow, shown in Fig. 1b,
by starting from the longitudinal momentum equation in the cylindrical coordinates, i.e.,

−∂p
∂z

=
1
r

∂
∂r

r

[
u′ru′z −

1
Reb

∂uz

∂r

]
+ Iz +

∂uz

∂t
, (12)
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where

Iz =
1
r

∂(rur uz)
∂r

+
∂(uzuz)

∂z
− 1

Reb

∂2uz

∂z2 . (13)

The definitions of dimensionless quantities are similar as those for channel flow, e.g., in Eq. (3),
δ∗ be replaced with the pipe radius, R∗. Following the similar procedure as for channel, we obtain
the following relationship:

Cf =
16
Reb

+16
Z 1

0
2r u′ru′z rdr

−16
Z 1

0
(r2 −1)

(
I ′′z +

∂p′′

∂z
+

∂uz

∂t

)
rdr .

(14)

The weighting factor for the Reynolds stress is proportional to a square of the radial distance from
the pipe axis.

For a plane boundary layer with zero mean streamwise pressure gradient, the starting point of
derivation is Eq. (1) (with −d p/dx = 0). The velocity is nondimensionalized by the free stream
velocity, U∗

∞, and the boundary layer thickness, δ∗ (e.g., 99 % thickness). The Reynolds number
is defined as Reδ = U∗

∞δ∗/ν∗. The following conditions may be assumed instead of the conditions
(A) and (C) for channel and pipe flows:

(A′) constant free stream velocity,
(C′) (∂u/∂y) = 0 at y = 1 (strictly speaking, this is an approximation).

In this case, the relation is obtained by directly applying the triple integration to Eq. (1) and it
reads

Cf =
4(1−δd)

Reδ
+2

Z 1

0
2(1− y)(−u′v′) dy

−2
Z 1

0
(1− y)2

(
Ix +

∂u
∂t

)
dy ,

(15)

where δd denotes the displacement thickness normalized by δ∗. For a stationary laminar plane
boundary layer, the first contribution is 4(1− δd)/Reδ � 2.6/Reδ and the third contribution can
be computed as 0.7/Reδ by using the similar solution of Howarth[7]. The summation of these
contributions is identical to the well-known relation: Cf � 3.3/Reδ (= 0.66/

√
Rex).

The meaning of the first term in Eq. (15), however, is not clear as in the cases of Eqs. (11) and
(14) because this term also depends on the mean velocity profile via δd . Note that, for channel and
pipe flows, the resulting relationships are simpler because of the condition of constant flow rate
(i.e., condition (A)) In channel and pipe flows, only conditions (A) and (B) are essential for the
present analysis and it is easy to modify conditions (C) and (D). For example, for a fully-developed

TABLE I: Contribution of each term of Eq. (14) to Cf (pipe flow at Reb = 5300, y+u
d � 15).

Laminar Turbulent Total
(first term) (second term) (Cf )

No control 3.02×10−3 6.25×10−3 9.27×10−3

Controlled 3.02×10−3 4.02×10−3 7.04×10−3
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FIG. 2: Raw and weighted Reynolds stress distribution (nondimensionalized by R∗ and 2U∗
b ) in uncontrolled

and controlled pipe flows at Reb = 5300 (Reτu � 180).

channel flow with uniform blowing and suction on the walls [8] (i.e., removal of condition (C)),
the relation reads

Cf =
12
Reb

+12
Z 2

0
(1− y)(−u′v′) dy

−12 Vw

Z 2

0
(1− y) u dy ,

(16)

where Vw is the blowing/suction velocity at the walls and Cf is defined as an average of the friction
coefficient on the two walls.

The advantage in the series of relations derived above is that one can quantitatively identify each
dynamical contribution to the drag reduction/enhancement even for a manipulated flow. Here, we
consider a fully developed turbulent pipe flow controlled by the opposition control algorithm[2],
in which the third term of Eq. (14) is zero. The data were obtained by DNS based on the energy-
conservative finite difference method [9] at the Reynolds number of Reb = 5300 (Reτu � 180).
The detection plane is set at y+u

d � 15. Here, a super- or subscript of u denotes a quantity nondi-
mensionalized by the friction velocity of the uncontrolled flow. General results of this DNS are
reported elsewhere[10], while we focus here on the derived relation.

Figure 2 shows the Reynolds stress, u′ru′z, and the weighted Reynolds stress appearing in Eq.
(14) (i.e., 2r2u′ru′z). As is noticed in Eq. (14), the contribution of Reynolds stress near the wall is
dominant both in uncontrolled and controlled cases. The difference in the areas covered by these
two (controlled and uncontrolled) curves of the weighted Reynolds stress is directly proportional
to the drag reduction by control. In the present case, the turbulent contribution is reduced by 35
%, though the total drag reduction is 24 % due to the presence of the laminar contribution as
summarized in Table I. The contribution of Reynolds stress near the wall can be more clearly
illustrated by plotting a cumulative contribution, CT (cum)

f , to the turbulent part defined here as,

CT(cum)
f (y) = 16

Z 1

1−y
2ru′ru′z rdr , (17)
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FIG. 3: Cumulative contribution of Reynolds stress (pipe flow, Reb = 5300, y+u
d � 15).

where y = (1− r) is the distance from the wall. As is shown in Fig. 3, the Reynolds stress within
80 wall units from the wall is responsible for 90 % of the turbulent contribution to the skin friction
in the case of uncontrolled flow. The opposition control algorithm by Choi et al.[2] utilizes this
fact. Namely, it works to suppress the Reynolds stress near the wall, and results in considerable
drag reduction in a low Reynolds number wall-bounded flow.

Another example is a fully-developed channel flow with uniform blowing on one wall and
suction on the other. Table II and Fig. 4 show the componential contributions computed from
the database[8] (http://www.thtlab.t.u-tokyo.ac.jp/), where the blowing/suction velocity
is Vw = V∗

w/(2U∗
b ) = 0.00172. For comparison, the case with Vw = 0 (an ordinary channel flow)

at the same bulk Reynolds number (Reb � 4360) was also computed by the pseudospectral DNS
code[11]. The turbulent contribution on the blowing side (defined here, for convenience, as 0 ≤
y ≤ 1) is larger than that in the case of Vw = 0, while it is close to zero on the suction side (1 ≤
y ≤ 2). The total turbulent contribution is slightly reduced from the the ordinary channel flow.
The convective contribution is negative on the blowing side and positive on the suction side. The
total convective contribution is slightly positive. Since the total convective contribution exceeds
the amount of reduction in the turbulent contribution, the total Cf results in a larger value than that
of the ordinary channel flow.

In summary, we derived very simple, direct relationship between the Reynolds stress and the
skin friction coefficient for three canonical wall-bounded turbulent flows, i.e., Eq. (11) for channel,

TABLE II: Contribution of each term of Eq. (16) to Cf (channel flow with/without uniform blowing/suction
at Reb = 4357, Vw = 0.00172).

Laminar Turbulent Convective Total
(first term) (second term) (Third term) (Cf )

Without 2.8×10−3 5.9×10−3 0 8.7×10−3

With 2.8×10−3 5.6×10−3 1.1×10−3 9.5×10−3
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FIG. 4: Turbulent (CT = (1−y)(−u′v′)) and convective (CC =−Vw(1−y)u) contributions in a channel flow
with uniform blowing/suction (Reb � 4360, Vw = 0.0017). Dotted line is the turbulent contribution in an
ordinary channel flow (Reb � 4360, Vw = 0).

Eq. (14) for pipe, Eq. (15) for plane boundary layer, respectively. Especially, for fully-developed
turbulent channel and pipe flows, these relations reduce to

Cf =
12
Reb

+12
Z 1

0
2(1− y)(−u′v′) dy (18)

and

Cf =
16
Reb

+16
Z 1

0
2r u′ru′z rdr , (19)

respectively. Usefulness of the relation was demonstrated through some examples of flow control.
For drag reduction control, suppression of the Reynolds stress near the wall is of primary impor-
tance. It is also worth noting that turbulent skin friction becomes even smaller than that in laminar
flow with a control algorithm which can make the turbulent part of Eqs. (11) and (14) negative.
The present relationship enables quantitative discussion on the drag reduction/enhancement effects
brought about by the modification of the flow structure, and may serve as a clue for development
and evaluation of new control algorithms.
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