
7th International Symposium on Engineering  
Turbulence Modelling and Measurements (ETMM7) 

June 4th-6th , 2008 

 280 

LOW-PASS FILTERING EFFECTS OF VISCOUS SUBLAYER ON HIGH 
SCHMIDT NUMBER MASS TRANSFER CLOSE TO A SOLID WALL 

Y. Hasegawa and N. Kasagi 

Departiment of Mechanical Engineering, The University of Tokyo, 

 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan, 113-8656 
 

hasegawa@thtlab.t.u-tokyo.ac.jp  
 

Abstract 
Numerical simulation of high Schmidt number 

turbulent mass transfer across a solid wall is carried 
out. Particular attention is paid to damping of 
high-frequency concentration fluctuations close to a 
solid wall and its effects on the mass transfer 
mechanism. Spatio-temporal correlation shows that 
the high Schmidt number concentration field be-
comes less sensitive to the normal velocity fluctu-
ations inside the viscous sublayer. As a result, only 
lower-frequency velocity fluctutations penetrate the 
viscous sublayer, and control the mass transfer. This 
would be a primary reason why the analogy between 
momentum and mass transfer, which has been 
widely used in engineering applications, does not 
hold at high Schmidt numbers.  
 
1 Introduction 

Turbulent high Schmidt number scalar transfer 
across a solid wall plays important roles in a variety 
of engineering applications, such as water-cooling 
system in internal-combustion engines. In addition, 
it is known that the mass transfer mechanism across 
a highly contaminated air-water interface is essen-
tially the same as that near a solid wall (Hasegawa 
and Kasagi, 2008). Hence, the understanding and 
modelling of transport processes near a solid wall 
are important issues not only in engineering, but al-
so in environmental problems. 

When considering the high Schmidt number 
mass transfer, the concentration boundary layer be-
comes much thinner than the momentum boundary 
layer, so that the transport mechanism is governed by 
turbulent motions in the immediate vicinity of a wall. 
Therefore, Taylor series expansion has been widely 
employed for representation of velocity and concen-
tration fields. Considering that both the eddy diffus-
ivity Ed and eddy viscousity Ev are proportional to the 
cube of the distance from a wall, the analogy be-
tween momentum and mass transfer has been well 
documented (Monin and Yaglom, 1971; Kader, 
1981). This leads to a well-known relationship 
Q ∝ Sc−2 /3 ,where Q is the mass transfer rate. 

However, according to precise experiments with 
electrochemical techniques conducted by Shaw and 

Hanratty (1977), Q is proportional to Sc-0.704. 
Although this discrepancy in the Schmidt number 
exponent might be considered trivial, it results in 
20 % difference in the mass transfer rate at Sc = 
1000, which is the typical value of a gaseous solute 
in water. In addition, the deviation of the Schmidt 
number exponent from –2/3 suggests the change in 
the transport mechanism at high Schmidt numbers. 

Recently, numerical simulations of high Schmidt 
number mass transfer have been carried out by sev-
eral groups (Na and Hanratty, 2000; Seki, et al., 
2006; Bergant and Tiselj, 2007; Hasegawa and Ka-
sagi, 2007). These data commonly show that the 
turbulent Schmidt number, which is defined by Sct = 
Ev / Ed, is increased with the Schmidt number in the 
vicinity from the wall. In addition, the 
high-frequency concentration fluctuations at high 
Schmidt numbers are strongly dumped inside the 
viscous sublayer (Hasegawa and Kasagi, 2007). In 
other words, the viscous sublayer acts as something 
like a low-pass filter, so the concentration field re-
sponses to only low-frequency velocity fluctuations. 
These results indicate that the analogy between the 
momentum and mass transfer can not be used for 
predicting the mass transfer.  

In the present study, we carry out numerical 
simulation of turbulent mass transfer at high 
Schmidt numbers. The Schmidt number is sys-
tematically changed as Sc = 1.0, 100, 200 and 400. 
Our objective is to clarify how the damping of 
high-frequency fluctuations influences the concen-
tration statistics and the mass transfer mechanisms 
inside the viscous sublayer. These will provide use-
ful information in establishing the scaling-law of the 
concentration boundary layer and developing the 
mass transfer model. 
 
2 Computational Model 

The computational domain and coordinate sys-
tem considered in the present study are shown in Fig. 
1, where x, y and z are streamwise, wall-normal and 
spanwise directions, respectively. The flow is driven 
by constant pressure gradient in the streamwise di-
rection. A no-slip condition is imposed at the top 
boundary, while a free-slip at the bottom boundary. 
For the concentration field, constant concentrations, 
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i.e., c = 1.0 and 0 are applied at the top and bottom 
boundary, respectively. The computational periods 
are chosen to be 2.5 πδ* and πδ * in x and z direc-
tions, respectively, where δ* is the depth of the 
channel. A value with an asterisk represents a di-
mensional value throughout the present paper. 
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Figure 1:Computational domain and  

coordinate system 
 
The governing equations are the incompressible 

Navier-Stokes, continuity and scalar transport equa-
tions given below: 

 
∂ui
∂t

+ u j
∂ui
∂x j

= − ∂p
∂xi

+ 1
Reτ

∂2ui
∂x j∂x j

, (1) 

 
∂ui
∂xi

= 0 , (2) 

 
∂c
∂t

+ u j
∂c
∂x j

= 1
ScReτ

∂2c
∂x j∂x j

, (3) 

where, the velocity ui and the coordinate xi are 
non-dimensionalized by uτ

* and δ * in each phase, 
where uτ

* is the friction velocity at the top wall. The 
concentration c* of a solute is normalized by the 
concentration difference ΔC* between the top and 
bottom boundaries. The non-dimensional parameters 
which characterize the velocity and concentration 
fields are the Reynolds number Reτ  = uτ

*δ */ν * and 
the Schmidt number Sc = ν* /D*, where ν* and D* are 
the kinematic viscosity of fluid and the molecular 
diffusivity of a gaseous solute, respectively. In the 
present study, the Reynolds number is kept constant 
as Reτ  = 150, while the Schmidt number is system-
atically changed as Sc = 1.0, 100, 200 and 400. 

Direct numerical simulation (DNS) is applied to 
the velocity and concentration fields at Sc = 1.0 by 
using a pseudo-spectral method. 64 x 64 Fourier 
modes in the x and z directions and Chebyshev 
polynomials up to 144 are used. For high Schmidt 
numbers from 100 to 400, we apply a hybrid 
DNS/LES scheme, which employs DNS with 
high-resolution grids within the thin concentration 
boundary layer, while large eddy simulation (LES) 
with coarser grids for the outer regions. We provide 
a switching region between them in order to connect 
the two regions smoothly. The DNS region is de-
termined as y+

DNS < 11.3 so that the more than 95 % 
of the mean concentration change is resolved by 
DNS. The number of grids employed in each region 
are listed in Table 1. By introducing such a solu-

tion-adaptive scheme, we can calculate the high 
Schmidt number concentration filed with reasonable 
cost, while maintaining accuracy near the wall. The 
details of the hybrid DNS/LES scheme and its veri-
fication can be found in Hasegawa and Kasagi 
(2007).  

 
Table 1: Number of modes and grids in hybrid 

DNS/LES 

Sc Region kx, Ny, kz Δx+ Δy+ Δz+ 

DNS 192, 34, 192 6.1 0.01 ~ 0.62 2.4 

Switching 192, 15, 192 6.1 0.66 ~ 0.85 2.4 100 

LES 64, 144, 64 18.4 0.01 ~ 0.79 7.2 

DNS 256, 34, 256 4.6 0.01 ~ 0.62 1.8 

Switching 256, 15, 256 4.6 0.66 ~ 0.85 1.8 200 
LES 64, 144, 64 18.4 0.01 ~ 0.79 7.2 

DNS 288, 40, 288 4.1 0.008 ~ 0.58 1.6 

Switching 288, 15, 288 4.1 0.60 ~ 0.77 1.6 400 
LES 64, 162, 64 18.4 0.008 ~ 0.77 7.2  

 
3 High Schmidt number effects on 
Concentration Statistics 

The global mass transfer rate Q+ is defined as: 

 Q+ = Q*

uτ
* CT

* − CB
*( ) =

1
ΔCB

+ , (4) 

Here, CT
* and CB

* are the mean concentrations at 
the top wall and the bulk, respectively, while 
ΔCB

* = CT
* − CB

* . It is known that the Schmidt number 
dependency of the mass transfer rate changes around 
Sc = 10. Namely, the DNS data obtained by Na et al. 
(1999) up to Sc = 10 leads to Q+ = 0.0509xSc-0.546. In 
contrast, the laboratory measurement by Shaw and 
Hanratty (1977a) and the Lagrangian calculation by 
Na et al. (1999) can be correlated with Q+ = 
0.0889xSc-0.704 for higher Schmidt numbers. The pre-
sent results show good agreement with the two cor-
relations as shown in Fig. 2. Note that the present re-
sults agree with the previous data that the mass 
transfer rate decreases faster than Sc-2/3 at high 
Schmidt numbers. 
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Figure 2: Mass transfer rate as a function of the 

Schmidt number 
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The mean concentration profiles near a solid wall 
are shown in Fig. 3. The abscissa is the distance from 
the top wall in the shear unit. The ordinate is the 
mean concentration relative to the concentration at 
the top wall non-dimensionalized by the friction 
concentration cτ

*, where cτ
* =  Q* / uτ

* and Q* is mean 
mass flux at a solid wall. Obviously, the concentra-
tion boundary layer becomes thinner with increasing 
the Schmidt number. The thickness of the diffusive 
sublayer δc

+, where C+ = Sc ⋅ y+  is satisfied within 
deviation of 5 %, is plotted as a function of the 
Schmidt number in Fig. 4. By assuming the analogy 
between the momentum and mass transfer, we obtain 
a conventional scaling law, i.e., δc

+ ∝ Sc−1/3 . In con-
trast, recent DNS data obtained by Schwertfirm and 
Manhart (2007) show that δc varies as δc

+ ∝ Sc−0.29 . 
The present data support the latter correlation as 
shown in Fig. 4, while conflict with the conventional 
scaling law. 
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Figure 3: Mean concentration profiles. 
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Figure 4: Schmidt number dependency of the diffusive 

sublayer thickness. 
 
In Fig. 5, the concentration fluctuations 

non-dimensionalized by the concentration difference 
ΔCB  between the top wall and the bulk are shown. In 
accordance with the scaling of the diffusive sublayer 
thickness shown in Fig. 4, the abscissa is the distance 
from the wall multiplied by Sc0.3. The profile at Sc = 
1.0 deviates from the other data. This is mainly be-
cause the concentration boundary layer extends be-
yond the viscous sublayer. In contrast, At high 
Schmidt numbers, the peak of crms locates well within 

the viscous sublayer, and the profiles converge to a 
single line.  
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Figure 5: Concentration fluctutions 

 
The eddy diffusivity Ed and eddy viscosity Ev are 

defined as follows: 

 Ed
+ = c+ 'v+ ' dC

+

dy+
⎛
⎝⎜

⎞
⎠⎟

−1

. (5) 

 Ev
+ = −u+ 'v+ ' dU

+

dy+
⎛
⎝⎜

⎞
⎠⎟

−1

. (6) 

Considering the limiting behavior of velocity and 
concentration fluctuations toward a solid wall, it is 
shown that both Ed and Ev vary as y3 in the immediate 
vicinity from the wall (Hasegawa and Kasagi, 2007). 
In Fig. 6, the limiting behavior of Ed and Ev are 
shown. Ed at Sc = 1.0 coincide with Ev, and they are 
proportional to y3 near a solid wall. In contrast, Ed at 
high Schmidt numbers decreases faster than y3 near a 
solid wall. It is known that the region where 
Ed

+ ∝ y+3  always lies in the diffusive sublayer, where 
the molecular diffusion is dominant over the turbu-
lent transport (Na et al., 1999; Hasegawa and Kasagi, 
2007). Based on laboratory measurement, Shaw and 
Hanratty (1977a) argue that Ed over the concentration 
boundary layer is better represented by the 
Ed

+ = 0.000463y+3.38  for high Schmidt numbers. The 
present results agree fairly well with the correlation. 
 

10-7

10-6

10-5

10-4

10-3

10-2

10-1

E
d+  o

r 
E

v+

0.1
2 3 4 5 6 7 8

1
2 3 4 5

y+

Ed
+

: Sc = 1.0
: Sc = 100
: Sc = 200
: Sc = 400

: Ev
+

: Shaw and Hanratty (1977)
Ed

+= 0.000463y+3.38

 
Figure 6: Limiting behavior of eddy diffusivity and 

eddy viscosity close to the wall 
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The turbulent Schmidt number Sct is defined as: 

 Sct =
Ev

+

Ed
+ . (7) 

In Fig. 7, the limiting behavior of Sct is shown. For 
all cases, Ed is almost constant and close to unity out-
side the viscous sublayer y+ > 5. High Schmidt num-
ber effects appear close to the wall. Specifically, Sct 
increases as the wall is approached, and the limiting 
value is monotonically increased with the Schmidt 
numbers. Although further computation with finer 
grids is necessary to obtain the exact limiting value 
of Sct at the wall, it is clear that the assumption of 
constant Sct inside the concentration boundary layer, 
in other words, the analogy between the momentum 
and mass transfer cannot be used in predicting the 
mass transfer rate at high Schmidt numbers. The 
drastic change of Sct close to the wall suggests the 
changes in the mass transfer mechanism. In the fol-
lowing sections, we focus on the response of the 
concentration boundary layer to the velocity fluctua-
tion inside the viscous sublayer. 
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Figure 7: Turbulent Schmidt number 

 
4 Frequency characteristics of high 
Schmidt number concentration field. 

Because of a thin concentration boundary layer at 
the high Schmidt number, the transport equation (3) 
of the solute concentration can be simplified as: 

 ∂c
∂t +

+ v+ ∂c
∂y+

= 1
Sc

∂2c
∂y+2

. (8) 

Since the wall shear governs the near-wall turbulence 
and associated transport phenomena, v and y in Eq. 
(8) are non-dimensinoalized by the friction scales, 
while the concentration is normalized by ΔCB

* . In-
side the viscous sublayer, v can be approximated by 

 
v x, y, z, t( )  γ (x, z, t)y2 , where 2γ = ∂2v / ∂y2( )y=0 . 

Shaw and Hanratty (1977b) derived the following 
relationship for high frequencies: 

 
Wq ω( )
Q2 =

4Wγ ω( )
Scω 3 . (9) 

Here, Wq and Wγ are the frequency spectra of the lo-
cal mass transfer rate q = 1 / Sc( ) ∂c / ∂y( )y=0  and γ, 
respectively. Good agreement between the present 

data and the model prediction by Eq. (9) is confirmed. 
Equation (9) explains fundamental features of con-
centration fluctuations close to the wall. Specifically, 
the high-frequency concentration fluctuations attenu-
ate in inverse proportion to the cube of the frequency 
ω. In addition, the appearance of Sc in the denomi-
nator of Eq. (9) results in the strong damping at the 
high Schmidt number.  

Recently, Hasegawa and Kasagi (2007) show that 
the damping of concentration fluctuation has a strong 
impact on the transport mechanism close to the wall. 
Specifically, the contribution of high-frequency fluc-
tuations to the co-spectrum of wall-normal turbulent 
mass flux c 'v '  drastically reduced at the high 
Schmidt number. This indicates that low-frequency 
velocity fluctuations, which possess only a small 
fraction of total kinetic energy, govern the mass 
transfer. 
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Figure 8: Frequency spectra of local mass transfer 

rate 
 
5 Spatio-temporal correlation between 
velocity and concentration fields. 

In order to clarify high Schmidt number effects 
on the mass transfer, the spatio-temporal correlation 
coefficients between the normal velocity at y0

+ away 
from the wall and velocity/concentration fluctuations 
are calculated: 

 Rα y,Δt( ) = α ' x, y, z, t( )v ' x, y0 , z, t( )
α rms y( )vrms y0( ) . (10) 

Here, α denotes a velocity component or concentra-
tion. In Fig. 9, Rα when y0

+ = 12, are plotted. In re-
sponse to the upwelling motion toward the top wall at 
Δt+ = 0, i.e. Rv > 0, low concentration and high 
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streamwise velocity fluctuations are induced, i.e., Rc 
< 0 and Ru > 0. In the case of Sc = 1.0, the concentra-
tion field quickly responds to the normal velocity 
fluctuation even close to the wall. It should be also 
noted that Ru has an opposite sign, but strong similar-
ity to Rc. In contrast, at Sc  =100, concentration field 
becomes less sensitive to the velocity fluctuation 
close to the wall. As the wall is approached, the peak 
value of Rc decreases. In addition, there exists large 
temporal difference in the response of the concentra-
tion field. Specifically, Rc at Sc = 100 has a peak 
around Δt+ = 35 after the normal velocity is induced. 

In order to clarify the Schmidt number de-
pendency on the response of the concentration field 
to the normal velocity fluctuation v’, the spa-
tio-temporal correlation Rq between v’ at y0

+ = 12 and 
the local mass transfer rate q is shown in Fig. 10. It is 
found that the local mass transfer rate becomes less 
sensitive to the normal velocity fluctuation, and the 
response time ΔΤq

+ is increased with increasing the 
Schmidt number. In Fig. 11, ΔΤq

+ is plotted as a 
function of the Schmidt number. Monotonic increase 
of ΔΤq

+ is confirmed. 
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Figure 9: Spatio-temporal correlation between the 

normal velocity at y+ = 12 and velocity/concentration 
fluctuations. 

 
The response time lag at the high Schmidt num-

ber also influences the spatial pattern of the local 
mass transfer rate q. The instantaneous distributions 
of γ and q at Sc = 1.0 and 100 under the identical 
flow condition are shown in Figs. 12 a) b) and c), re-
spectively. At the low Schmidt number of 1.0, the 

low mass-flux regions are characterized by streaky 
structures, while the high mass-flux regions are 
spotty, which corresponds to the impingement of 
bulk fluid (see, dotted areas in Figs. 12 a) and b)). In 
contrast, at Sc = 100, both low and high mass flux 
regions have elongated streaky structures. By care-
fully comparing Figs. 12 b) and c), it is also observed 
that the high mass-flux streaks at Sc = 100 lie about 
Δx+ = 200 downstream of the high mass-flux spots at 
Sc = 1.0 (see, dotted areas in Figs. 12 b) and c)). To-
tally, these results are consistent with the spa-
tio-temporal correlation shown in Fig. 10. 
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6 Conclusions 

High Schmidt number effects greatly influence 
the transport processes inside the viscous sublayer. 
With increasing the Schmidt number, the 
high-frequency concentration fluctuations are 
strongly damped. This trend can be explained by the 
theoretical analysis by Shaw and Hanratty (1977b). 
As a result, the concentration field at a higher 
Schmidt number becomes less sensitive to the veloc-
ity fluctuation, and only lower-frequency fluctuations 
govern the mass transfer. This would be a primary 
reason why the analogy between the momentum and 
mass transfer does not hold at high Schmidt numbers. 
The present results underline the necessity of devel-
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oping a mass transfer model taking into account for 
the damping effect near a solid wall. 
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