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ABSTRACT
  In the present study, numerical simulation of adiabatic air-
water slug flow in a micro tube is carried out. The focus is laid
upon the pressure drop characteristics and its modeling. The
Phase-Field method is employed to capture the interface
between the phases, while the surface tension force is
represented by the chemical potential formulation. The
numerical results agree fairly well with available experimental
results in terms of bubble shape and flow pattern.
  Simulation is repeated under different conditions of pressure
gradient, void fraction and bubble frequency. It is found that
the total pressure drop of a slug flow can be decomposed into
two parts, i.e., the frictional pressure drop associated with a
liquid slug sandwiched by bubbles, and the pressure drop over a
bubble itself. For the former, when the liquid slug is longer than
one tube diameter, the cross-sectional velocity distribution
resembles a Poiseuille flow profile, so that the corresponding
pressure drop can be predicted by the theoretical solution of
single-phase liquid flow, i.e., fReTP = 64. For the latter, if it is
assumed that the surface tension force is strong enough to
sustain a thin liquid film between the interface and the tube
wall, the pressure drop in this region is negligible. The pressure
drop over a bubble is solely dependent on the two-phase
superficial Reynolds number ReTP, which can be correlated as:
Δ ′pbubb = 0.07 + 42.4 / ReTP . This correlation predicts well the
two-phase pressure drop in the form of the two-phase multiplier
correlation as a function of the Lockhart-Martinelli parameter.

  INTRODUCTION
  Gas-liquid slug flow in micro conduits has attracted much
attention because of its wide industrial applications such as
micro heat exchangers and biotechnology systems. The features
of extremely large surface-to-volume ratio, dominance of
surface tension force, and alternate passage of gas and liquid
provide a novel way for heat and mass transfer enhancement.
   
To optimize micro thermo-fluid systems, detailed
understandings of flow and heat transfer mechanisms are
crucial.
  With order-of-magnitudes reduction in hydraulic diameter
from 10 mm to 100 µm, significant differences in two-phase
flow pattern, void fraction, pressure drop as well as heat/mass
transfer have been reported. As reviewed by Ghiaasiaan S. M.
(2001), although extensive experiments have been carried out,
considerable discrepancies largely due to the difficulties in
experimental setup and local measurements prevent to draw
satisfied conclusions.
  As an alternate way of investigation, numerical simulation
provides possibilities to obtain local velocity and temperature
in detail, and interpret the underlying physics. However,
numerical simulation of two-phase flow in a micro conduit has
been demonstrated to be a formidable task. The dominant
surface tension force, abrupt changes of density over interface
as well as the interaction between interface and solid wall set
up great challenges for simulation. Continuous efforts have
been made in the fields of interface tracking, surface tension
formulation and transport model across interface. Son and Dhir
(1999) developed a two-dimensional numerical model of
growth and departure of single vapor bubble during nucleate
pool boiling. They used the lubrication theory for phase change
in microlayer region. Fukagata et al. (2007) simulated slug
flows in a micro tube of 20 µm tube by using the level-set
method to capture the interface, and higher pressure drop than
that from experimental correlations was reported. By using
CFD package CFX, Baten and Krishna (2005) investigated
mass transfer from the liquid phase to the wall during the rise
of Taylor bubbles in tubes of millimeter. A correlation was
proposed for practical estimation of wall mass transfer.
  Usually, a circular tube with diameter from about 10 to
several hundred µm is defined as a micro tube. With the
reduction of scale, the surface tension force rather than the
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body force dominates the flow and heat transfer performances.
The resulting capillary number (Ca) for a typical slug flow is
on the order of 0.001 ~ 0.1. Due to the large interface curvature,
the pressure jump across the interface between the liquid and
gas phases is significant. When the surface tension force is
discretized with finite grids, tiny numerical errors will cause a
considerable parasitic flow when conventional continuum
surface force (CSF) model is being used (Shirani et al. 2005),
although it has been widely employed in various interface-
capturing methods such as level-set and volume-of-fluid (VOF)
method.
  As an alternative approach, the so-called Phase-Field method
describes the fluids and the interface from the viewpoint of
energy. The surface tension force is correspondingly
represented as the extra potential energy due to the variation of
fluid density across the interface. With the exact conservation
of surface tension energy and kinetic energy, the chemical
potential formulation of the surface tension force in the frame
of Phase-Field method can reduce the parasitic flow to the level
of the truncation error (He et al. 2008).
  Our final goal is to perform systematic simulations of two-
phase flow in micro conduits in order to understand the two-
phase flow and heat transfer mechanisms. In the present work,
the Phase-Field method is employed to simulate gas-liquid two-
phase slug flows without phase change in a micro tube; the
flow characteristics are compared with available experimental
results. The pressure drop mechanism is studied and a more
reasonable model to take the bubble frequency into account is
proposed and evaluated.

NOMENCLATURE

C Chisholm parameter
Ca capillary number
Cn Cahn number
D tube diameter (mm)
F concentration

 


Fs surface force (N)

j superficial velocity (ms-1)
L length (m)
M mobility
p pressure (Nm-2)
Pe Peclet number
r radial coordinate (m)
R tube radius (m)
Re two-phase Reynolds number
t time (s)
u local velocity (ms –1)
U average velocity (ms –1)
V volume
We Weber number
X Martinelli parameter
z longitudinal coordinate (m)

Greek letters
ρ density (kgm-3)
µ viscosity (Pas)
φ chemical potential
 

ΦL
2 two-phase multiplier

Ψ free energy density (J)
Ω domain
ψ dimensionless stream function
ε interface thickness parameter
σ surface tension coefficient (Nm-1)
γ constant 6 2
α void fraction
β volumetric gas flow ratio

Subsripts
c characteristic values
cap bubble caps
eq equilibrium
equ equivalent
film liquid film region
G gas phase
GO gas-only
L liquid phase
LO liquid-only
TP two-phase
bubb gas bubble
slug liquid slug
fri friction
wall values at wall
f front of bubble
r rear of bubble
z longitudinal

SIMULATION METHOD
Interface Capturing Method
  Phase-Field method (Jacqmin 1999) is a kind of diffuse-
interface method, which replaces a sharp fluid interface by a
thin but nonzero thickness transition region. The interfacial
forces are thereby smoothly distributed. The basic idea is to
introduce a conserved order parameter, F, to characterize the
two different phases, and it is analogous to the relative
concentration between the two phases. The F assumes to have a
distinct constant value in each bulk phase and changes rapidly
but smoothly in the interfacial region. In the present study, the
liquid takes the value of F = 1, while the gas F = 0. The
transition from 1 to 0 represents the interface region. The
concentration F is governed by the Cahn-Hilliard (C - H)
equation, i.e.,

 

∂F
∂t

+ (u ⋅∇)F = ∇ ⋅ (M (F)∇φ)  ,           (1)

φ = ′Ψ (F) − ε 2∇2F  ,                   (2)
where M(F), Ψ(F) and ε are the mobility, bulk energy density
and interface thickness parameter, respectively. For simplicity,
the mobility M(F) is assumed to be a constant in the present
study. The bulk energy density Ψ(F) is defined as F2 (1− F2 ) / 4 ,
which is a double-well positive function and has two minima
corresponding to the two stable phases. The immiscibility of the
fluid components has also been modeled thereby. The chemical
potential, φ, is the rate of change of free energy with respect to
F. Accordingly, the equilibrium interface profiles are the
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solutions when φ is constant. It has been shown that the
classical Navier-Stokes equations and pressure jump conditions
are recovered in the sharp interface limit ε → 0 (Anderson et al.
1998).

Governing Equations
  Once the shape and position of an interface is calculated
from Eq. (1), the physical properties of fluids are calculated by
interpolating those of gas and liquid phases, i.e.,

ρ = ρLF + ρG (1− F) ,   µ = µLF + µG (1− F) ,    (3)
where ρ and µ denote the density and viscosity, and the
subscripts L and G represent the liquid and gas, respectively.
  An isothermal air-water two-phase flow in a cylindrical pipe
is considered. It is assumed that the gas and liquid are
immiscible and phase change does not take place. Under these
assumptions, the governing equations are written as follows:

 ∇ ⋅ u = 0 ,                    (4)

 

∂ ρu( )
∂t

+ u ⋅ ∇(ρu ) = −∇p + ∇ ⋅ [µ(∇u + (∇u )T )] +

Fs .  (5)

The gravity force is neglected because of a very small tube
diameter considered. The surface tension force, 

 


FS , appearing

in Eq. (5) is computed by using the chemical potential
formulation (Jacqmin 1999):

 


Fs = −

σγ
ε
F∇φ  ,                     (6)

where σ denotes the surface tension coefficient. Equation (6)
ensures that the change rate of free energy due to convection
has the same magnitude, but an opposite sign to the change rate
of kinetic energy due to surface tension (Jacqmin 1999).
Assuming the concentration F to be locally equilibrium during
evolution and also to match the surface tension of the sharp
interface model, γ in Eq. (6) must satisfy

εγ (Feq (x))
2dx

−∞

∞

∫ = 1  .                 (7)

The one-dimensional (say, along the x-direction) non-uniform
solution gives the equilibrium composition profile as:

Feq (x) =
1+ tanh(x / 2 2ε)

2
 ,             (8)

and γ =6 2  as was first obtained by van der Waals.

Nondimensionalization
We define the dimensionless variables as

′r =
r
Lc

, ′z =
z
Lc

, ′u =
u
Uc

, ′t =
tUc

Lc
, ′p =

p
ρcUc

2
,

where Lc is the characteristic length, which is taken to be the
radius of tube in the present study, Uc is the characteristic
velocity, and ρC is the characteristic density defined as that of
liquid. Dropping the primes, the dimensionless equations read
     ∇ ⋅ u = 0 ,
    

 

∂(ρu)
∂t

+ u ⋅ (∇ρu) = −∇p +
1
Re

∇ ⋅ (µ(F)(∇u + (∇u)T )) − σγ
εWe

F∇φ ,  

    
 

∂F
∂t

+ u ⋅∇F =
1
Pe

∇2φ ,                            (9)

    φ = ′Ψ (F) − Cn2∇2F .
The dimensionless parameters of Reynolds number Re, the
   
          

Peclet number Pe and the Weber number We are defined as
 Re = ρCUCLC

µC

, PeF =
UCLC
MCφC

, We = ρCUC
2LC

σ
.        (10)

The Reynolds number is the ratio between inertial and viscous
forces, the diffusional Peclet number is that between convective
and diffusive mass transport, and the Weber number is the force
ratio of inertia and surface tension. The Cahn number,

Cn = ε / LC ,                        (11)
is a dimensionless numerical parameter that provides a measure
of the ratio between the interface thickness and the
characteristic length LC. The choice of Cn is influenced by the
numerical accuracy, efficiency and stability (Jacqmin 1999).

Numerical Procedures
  The Navier-Stokes equations are solved by the SMAC
method. A constant pressure gradient, –dP/dz, is applied in the
z direction. The second-order central difference scheme is used
for the spatial discretization. The pressure Poisson equation is
solved by the successive over-relaxation (SOR) scheme. An
equally spaced staggered grid system is adopted. The grid is
uniform both in the longitudinal (z) and radial (r) directions.
The gird size is fixed at Δr/R = Δz/R = 0.03125, which
corresponds to 32 grids in the radial direction. Considering the
steep change of F across the interface, advection term of Eq. (1)
is solved by the CIP scheme, which is compact, bounded and of
nearly spectral accuracy (Yabe et al. 1991). The right-hand-side
terms of Eqs. (1) and (2) are discretized by using the standard
central difference scheme.

Simulation Conditions
  We consider a slug flow of air and water in a micro tube, and
an axisymetric flow is assumed. The flow consists of a periodic
train of bubbles, which occupies most of the tube cross-section.
It has been reported by many experimental visualizations that
the gas bubbles and liquid slugs appear to stay a constant length
and travel at the same velocity in a micro tube (Hayashi et al.
2007, Amador et al. 2004). Agglomeration and coalescence
only take place at the entrance region. Therefore, the gas and
liquid flow rate, and also the inlet geometry together determine
the gas bubble and liquid slug lengths. The observation
indicates that a model without agglomeration would be
reasonable for slug flow in micro tubes.
  The bubble frequency, i.e., the number of gas bubble and
liquid slug pairs in unit tube length, is represented in terms of
length of period Lz/R, where R is the tube radius, and it varies
as Lz/R  = 3–15 in the present simulations. The computational
domain is two-dimensional (r – z) with periodic boundary
condition in the streamwise direction, z, and no-slip condition
at the wall. Besides that, various boundary conditions are
needed for C−H equation. The first one is for the chemical
potential φ. By applying the divergence theorem to Eq. (1) and
integrating it over the domain, Ω, we have,

  
 

∂F
∂tΩ∫ dV + (u ⋅ n)F

∂Ω∫ dS =
1
M

∇φ ⋅ ndS
∂Ω∫ .       (12)

Under the no-slip boundary condition (i.e.,  
u ⋅ n = 0 ) and the

conservation of mass in Ω, ( (∂F / ∂t)
Ω∫ dV = 0 ), the chemical

potential has to satisfy the no-flux boundary conditions,
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n ⋅∇φ = 0 .                    (13)
The second boundary condition for the concentration F depends
on macroscopic contact angle at the contact-line region of three
phases. For diffusively controlled local equilibrium at the wall,
a contact angle is specified as (Jacqmin 1999):

εσγ ∂F
∂xn

+ γ w ′g (F) = 0
.                (14)

The experimental visualizations (Hayashi et al. 2007, Kawahara
et al. 2002) show that there always exists a liquid film
separating the gas bubble from the solid wall. Therefore,
complete wetting condition is applied along the wall in all
simulations; namely, at the first line of computational nodes
adjacent to the wall, the fluid is assumed as liquid.
  In accordance with the experimental conditions by Hayashi
et al. (2007), the water and Nitrogen at 20 °C (293 K) and 1
atm (ρL = 1.0 × 103 kg/m3, µL = 8.9 × 10-4 Pa⋅s; ρG = 1.2 kg/m3,
µG = 1.8 × 10-5 Pa⋅s) are used as working fluids. The resulting
surface tension is 0.0728 N/m. The diameter of the cylindrical
tube D is fixed at 600 µm. It should be noted that, unlike the
experiment, the present simulation is run with the void fraction,
bubble frequency and average pressure gradient being specific.
The flow rate and local pressure drop are obtained after the
simulation is converged.

RESULTS AND DISCUSSIONS
Flow Pattern
  Initially, a preliminary case with sufficiently long gas bubble
and liquid slug is carried out with Lz / R = 15. The resultant two-
phase Reynolds number ReTP is 458, which is defined as ReTP =
ρLUTPD/µL, where the UTP is the sum of superficial gas and
liquid velocities, i.e., UTP = jG + jL. Due to the incompressibility
assumption, the average velocity at each cross-section of the
tube is equal to UTP. Figure 1 shows the calculated bubble shape
and contours of dimensionless stream function relative the
bubble velocity ψ, defined as:

1
r
∂ψ
∂r

= uz −Ububb
, 1
r
∂ψ
∂z

= −ur .             (15)

Here Ububb is the calculated bubble moving velocity, which can
be visualized and recorded by high-speed camera in experiment.
Because of the strong surface tension force (Ca = µLUTP/σ =
0.003), the cap of gas bubble is nearly spherical and the
interface is rather close to the solid wall. Dry-out or contact is
not formed due to the wetting condition assumed along the wall.
Because of the presence of gas bubble, the flow structure is
quite different from that of single-phase flow. As shown in Fig.
1, an anti-clockwise circulation is found inside the gas phase,
with a relatively small clockwise circulation accompanied in
the front part of gas bubble. A circulation can also be found in

1.0
0.8
0.6
0.4
0.2

r/R

1412108642
z/R

Fig. 1. Bubble shape and relative streamlines. The lines
of ψ < 0 accords to clockwise circulation, as denoted by
red lines, and ψ > 0 accords to anti-clockwise circulation
denoted by blue.
   
the liquid region, in accordance with the sketch of possible
streamlines given by Taylor (1961). Similar results have been
shown experimentally by Thulasidas et al. (1997) and
numerically by Irandoust et al. (1989). This circulation results
in continuous refreshment of the liquid layer near the wall and
enhancement of heat and mass transfer.
  It is well known that the circulations in both gas and liquid
phases are due to the relative higher velocity at the tube center.
When the fast flowing fluid at tube center encounters the
interface, it bifurcates and flows perpendicularly towards the
wall. This wall-normal velocity causes axial mixing as well as
pressure deviation from that of single-phase flow. Figure 2
shows the contours of normal velocity components, ur, and the
variation of local fReTP number, where the friction factor is
defined as:

f =
(dp / dz) wall D
ρLUTP

2 / 2
.                   (16)

As expected, ur is detectable only in the region close to the
bubble caps, and asymptotic to zero in the gas and liquid
region. With the disappearance of ur, the local value fReTP in the
region of gas bubble is almost zero because of the stationary
film between the interface and the solid wall. In the liquid slug
region, fReTP ≈ 64, and this indicates that the flow in this region
resembles a Poiseuille flow and the velocity profile is
independent of the location as:

uz (r)
UTP

= 2(1− (r / R)2 ) .              (17)

  The features shown above suggest that it is possible to model
the pressure drop of two-phase slug flow by decomposition,
that is, the pressure drop over different regions can be modeled
separately as a single phase liquid flow region and a
bubble/liquid film region. The magnitude of normal velocity
component can be employed as an indicator for the separating
position. The details are discussed later.
  The above simulation is repeated under different values of
void fraction, α, pressure gradient, −dP/dz and bubble
frequency (length of period, Lz/R). Figure 3 shows the resultant
relationship between the void fraction, α, and the gas
volumetric flow ratio, β, which is defined as:

β =
jG

jG + jL
= αUbubb

UTP

.                  (18)
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Fig. 2. Contours of normal velocity component (a) and
axial variation of fReTP (b).
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Fig. 3. Relationship between volumetric gas flow ratio (β)
and void fraction (α)
As shown in the figure, the simulated cases lie along the so-
called Armand correlation, which is proposed for conventional
macro-sized tube,

α = 0.833β .                      (19)
By combining Eqs. (18) and (19), it straightforwardly leads to
the relation of Ububb to UTP as follows:

Ububb

UTP

≈ 1.2 ,                        (20)

which implies that the bubble velocity is about 1.2 times that of
the two-phase average velocity. The higher gas velocity
corresponds to the centerline velocity in the tube. Hayashi et al.
(2007) visualized the two-phase flow patterns, focusing on the
bubbly and slug flow regimes. The slip ratio between Ububb and
UTP is obtained by measuring the gas bubble velocity with a
high-speed camera and UTP at the inlet. The results are also
shown in the figure, where the results of simulation and
experiment agree fairly well. Kawahara et al. (2002) also
proposed a correlation based on the experimental data for a 100
µm ID tube as:

α =
0.03β 0.5

1− 0.97β 0.5
.                    (21)

In this correlation, α is a strongly nonlinear function of β
because of the different flow patterns. Their reported two-flow
patterns include quasi-annular and slug flows with long gas
bubble. These flow patterns are the main reason for relatively
high slip velocity between the phases.

Unit Cell Model
  A large number of experimental results on two-phase
pressure drop have been reported by employing the form of
homogenous model or separated model like Lockhart-
Martinlleni (L-M) method. These models would be convenient
in engineering practice. However, neither of them includes the
information about the two-phase flow pattern. The significant
pressure drop caused by bubbles would profoundly affect the
overall pressure drop, as has been confirmed by several
experimental (Fukano et al. 1993, Saisorn et al. 2007) as well
   
as numerical (Fukagata et al. 2007) studies. At the same time,
the length and frequency of circulation inside the liquid slug
determinates the heat/mass transfer enhancement. Although
empirical expressions have been proposed to correlate the
bubble frequency and gas bubble length ratio with the
gas/liquid superficial velocities (Garimela et al. 2002), their
application is limited only to macro or millimeter tubes. For
micro tubes, Hayashi et al. (2007) and Suo et al. (1964) have
shown that a nozzle of different diameters used for gas inlet
results in different bubble periods under the same superficial
velocities. This feature raises extra obstacles in pressure drop
modeling, while in the meantime it provides the possibility to
achieve an optimized design of inlet geometries to improve heat
transfer enhancement with a low cost of pressure drop.  
  To model the two-phase pressure drop with higher accuracy
by accounting for the bubble frequency, a so-called unit cell
model is proposed as illustrated in Fig. 4. The two-phase flow
system from tube inlet to outlet is decomposed into several
uniform unit cells. Each unit cell contains both a liquid slug and
a gas bubble. The liquid slug is assumed to have no entrained
gas as in macro-sized tubes. In view of the interface curvature,
the gas bubble is composed of liquid film region, Lfilm, and two
bubble caps, denoted as Lcap,r and Lcap,f, respectively. Due to the
strong surface tension, it is reasonable to assume that the liquid
film is thin and uniform, while the caps are nearly
hemispherical with Lcap,r ≈ Lcap,f ≈ R.
 Accordingly, the total pressure drop of two-phase flow ΔpTP in
a unit cell is the sum of the purely frictional pressure drop in
the slug sandwiched by gas bubbles and the pressure drop over
the gas bubble itself. The later can be further divided into the
pressure drop in the liquid film and the pressure loss associated
with front and rear caps of gas bubble, as illustrated in Fig. 2.
The pressure components are correspondingly named as the
friction pressure drop, Δpfri, the film pressure drop, Δpfilm, and
the bubble pressure drop, Δpbubb, respectively:
ΔpTP = Δpfri + Δpfilm + Δpbubb , Δpbubb = Δpbubb, f + Δpbubb,r . (22)

  Concerning the film pressure drop Δpfilm, under the premise
of thin and uniform liquid film, the radiuses at the front and
rear parts inside a gas bubble are the same. According to the
Young-Laplace equation, the pressure jumps across interface is
given as:

pbubb − pfilm =
σ
rint

,               (23)

Fig. 4. Unit cell model

ΔpfriΔpfilm Δpfilm

Lslug

Lfri
Lbubb,r Lbubb, f

Δpbubb,r Δpbubb. f
• •

PP

Lfilm, fLcap, fLcap,rLfilm,r

GasLiq
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where the rint is the radius of interface, pbubb and pfilm are the
pressures at the gas bubble and liquid film, respectively. On the
other hand, due to the negligible viscosity of gas phase, the
pressure inside gas bubble is nearly uniform. It is
straightforward that the pressure in liquid film is uniform, i.e.,
Δpfilm = 0.
  As indicated in Fig. 2, the frictional pressure drop Δpfri can
be simply predicted using the theoretical solution for Poiseuille
flow, i.e., fRe=64. Accordingly,

Δpfri =
32µLUTP

D2 Lfri .             (24)

Note that the velocity employed here is UTP because it is the
real velocity at which the liquid moves in the tube. In addition,
Lfri is the length over which the velocity profile can be
described as a Poiseuille flow with a negligible error and differ
from the visual liquid slug length Lslug.
  Inside the liquid slug, there exist regions where velocity
profile deviates from the parabolic profile, which are named as
effecting bubble region hereafter. It contains two parts, Lbubb,f
and Lbubb,r according to their relative positions to the gas bubble,
and Lbubb, = Lbubb,f + Lbubb,r. The visual liquid slug length, Lslug, can
be expressed as Lslug = Lfri + Lbubb. The respective definitions and
relationships are shown in Fig. 4.
  The separating point between the effecting bubble region and
the liquid single-phase region, denoted as ‘‘P’’ in Fig. 4, is
detected by using the relative magnitude of normal velocity.
Numerical experiments have been carried out and it is found
that when the relative normal velocity is less than 1% of the
average two-phase flow, i.e.,

ur
UTP

≤ 1% ,                (25)

the local fReTP deviates from 64 by only 1.5%.
  Simulation has been further performed to evaluate the
variation of the length of effective bubble region, Lbubb. The
liquid slug is 4R, which is long enough to get rid of the effects
due to the interactions between two sequent gas bubbles. Figure
5 shows the variations of effecting bubble length against
different ReTP numbers. As shown in the figure, the effecting
bubble length roughly equates one tube diameter and is nearly
independent of ReTP. Following a similar analysis method
proposed by Fukagata et al. (2007), the magnitude of the
effecting bubble length may be roughly estimated by
considering that the normal and longitudinal velocities decay to
zero with the same rate, i.e.,

ur
Lbubb, f

~ ur
Lbubb,r

~
∂uz
∂r

, and 
∂uz
∂r

~ UTP

R
.    (26)

Hence,
ur
UTP

~ Lbubb
2R

.                    (27)

Once the circulation in the liquid slug is formed, ur ~ UTP,
therefore, Lbubb ~ 2R. This relation is confirmed analytically by
Duda et al. (1970) and experimentally by Thulasidas et al.
(1997).
 

Bubble Pressure Drop
  Limited work is reported addressing the pressure drop over
the front and rear capes of gas bubble. Bretherton (1961)
pioneered the use of a lubrication analysis for the transition
region between the spherical front of the bubble and the flat
film far behind the cap. Expressions to predict the film
thickness and pressure drop over the bubble were presented. In
his model, the inertial force was neglected, while the variation
of Ca number was implemented by changing the fluid
viscosity. Kreutzer et al. (2005) experimentally studied the
pressure drop over the bubble. Numerical simulations were also
performed by using CFD package. The pressure drop over the
gas bubble was converted to the liquid slug region with an extra
term in the expression of fReTP as:

f =
64
ReTP

1+ b 1
Lslug

ReTP
Ca

⎛
⎝⎜

⎞
⎠⎟
0.33⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.        (28)

For ReTP < 50 and ReTP ≥ 50, b takes different values of 0.07
and 0.17, respectively.
  In the present study, once the velocity of two-phase reaches a
steady state, the pressure drop over the gas bubble region are
recorded and normalized by ρUTP

2 . The variation of
nondimentional pressure drop against the two-phase ReTP
number is shown in Fig. 6, while the results can be well

2.5
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1.5
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bu
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10008006004002000
ReTP

 Simulation
 ∆p´bubb = 0.07 + 42.4/ReTP
 b = 0.07
 b = 0.17

Fig. 6. Nondimentional pressures drop over the
bubble against two-phase ReTP number.
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Fig. 5. Variations of bubble effective length against
two-phase ReTP number
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correlated as:
Δ ′pbubb = 0.07 + 42.4 / ReTP .           (29)

For comparison, the results by Kreutzer et al. (2005) are also
shown in the figure. Equation (29) shows the asymptotic
changes toward the two limits of 0.07 and 0.17.

Pressure Drop Modeling
  Based on Eq. (29), it is possible to roughly estimate the
effect of gas bubble to the two-phase pressure drop. It is well
known that the fully developed Poiseuille flow can be
formulated as:

∂p*

∂z*
= −32 ,              (30)

where the pressure and coordinate are normalized by µu/D and
D, respectively. Equation (30) means that the nondimensional
pressure drop is 32 over a length of one tube diameter.
Similarly, the bubble pressure drop Δ ′pbubb and the equivalent
length in terms of tube diameter Lequ/D are shown in Fig. 7. The
pressure drop increases dramatically with ReTP and is roughly
equivalent to the pressure drop over length of 0.5 ~ 3.5 times of
the tube diameter in the developed single-phase flow. Taking
ReTP = 500 as an example, the dimensionless pressure drop is
nearly 90, which is nearly the pressure drop over a length of
three times tube diameters of a developed flow. When the gas
bubble is short, the presence of a bubble will cause a
measurable increase in the two-phase pressure drop. For a gas
bubble of two times of the tube diameter, the global pressure
drop can be simply formulated as a fully developed single-
phase flow with velocity of UTP.  
  Once each component of pressure drop is clarified, the two-
phase pressure drop can be formulated and compared with the
available models. The Lockhart-Martinelli model is a widely
used method to evaluate the pressure drop of two-phase flow in
macro-sized tubes. Originally, the relationship between
Lockhart-Martinelli parameter X2 and the friction multiplier,
ΦL

2 are graphically represented. They are defined respectively
as:

ΦL
2 =

(−dP / dz)TP
(−dP / dz)LO

, X 2 =
(−dP / dz)LO
(−dP / dz)GO

,     (31)

Fig. 7. Nondimentional bubble pressure drop and
equivalent length.
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where (−dP / dz)LO and (−dP / dz)GO are the pressure gradients
required to drive single phase liquid and gas flows at the same
superficial velocities, respectively. Later, Chisholm (1967)
related the friction multiplier to the Lockhart-Martinelli
parameter through a simple expression as follows:

ΦL
2 = 1+ C

X
+
1
X 2

.                 (32)

  The L-M model has enjoyed success in predicting the two-
phase drop in small channels. It was tested successfully for air-
water flow in miniature triangular channels of DH = 0.87 − 2.89
mm by Zhao & Bi (2001), and a circular tube of D = 100 µm by
Kawahara et al. (2002). Mishima & Hibiki (1996) suggested a
modified expression of C by correlating their experimental data
of air-water flow in tubes of 1 − 4 mm ID as:

C = 21 1− exp(−0.319D)[ ] ,              (33)
where the diameter D is in millimeter. For the present case with
D = 0.6 mm, Eq. (33) gives C = 3.65.
  The unit cell model and bubble pressure drop correlation are
integrated to predict the global two-phase pressure drop. The
visual liquid slug length Lslug is fixed at 4R, while the gas
bubble is specified as 2R, 5R, 7R and 11R, respectively.
According to the definition shown in Fig. 4, and results in Fig.
5, the frictional liquid slug length Lfri is 2R. The frictional
pressure drop is calculated by using Eq. (24), while the UTP is
calculated from two-phase ReTP number as:

UTP =
µLReTP
ρLD

.                  (34)

The ReTP number spans a wide range of 20 ~ 800. The bubble
pressure Δpbubb is calculated from Eq. (29), and the pressure
over liquid film is negligible. Therefore, the global two-phase
pressure drop is given as:

ΔpTP = Δpfri + Δpbubb .            (35)

To calculate X2 and ΦL
2, the superficial liquid and gas velocities

are required. Combining Eqs. (18) and (20), it comes:
jG = βUTP = 1.2αUTP , jL =UTP − jG .     (36)
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Fig. 8. Predicted pressure drop donated as
Lockhart-Martinelli correlation for different gas
bubble length.
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where the void fraction, α, can be algebraically calculated from
the volumes occupied respectively by liquid and gas phase.  
  The predicted results are shown in Fig. 8. The curves of
Chisholm correlation with C = 21, C = 5 and C = 3.65 are also
shown. The prediction covers the lines of C = 5 and 3.66 with
the change in the ReTP number. The discrepancy with the
experimental correlation is due to the two limits of ReTP
number. Under those limit conditions, the related flow patterns
are hardly achieved experimentally.

CONCLUSIONS
  In the present work, a series of numerical simulation is
carried out for air-water two-phase slug flows in a micro tube.
The tube diameter is fixed at 600 µm. The Phase-Field method
is employed to capture the interface, while the surface tension
force is represented by the chemical potential formulation in
order to suppress the significant parasitic flow. The two-phase
ReTP number is 20-800, while Ca number as 0.001-0.02, where
the surface tension force is dominate.
  A unit cell model is proposed to analyze the pressure drop,
which consists components due to a gas bubble and a liquid
slug. The local variation of the frictional factor shows that,
apart from viscous and inertial forces, the bubble’s two caps
have a profound impact on the overall pressure drop. This
indicates that the bubble frequency and relative bubble/slug
length have significant effects on the two-phase pressure drop.
Correspondingly, for the liquid flow of one tube diameter
length away from gas bubble, the flow profile across the tube is
almost identical to a Poiseuille flow and the corresponding
pressure drop can be predicted by an analytical solution of fReTP
= 64. The pressure drop along the liquid film is negligible
under the condition that the liquid film is thin and uniform
along the flow direction. The pressure drop due to gas bubble
caps is determined by the two-phase ReTP number, which is
correlated as: Δ ′pbubb = 0.07 + 42.4 / ReTP .
  The theoretical foundations with quantitative estimate
indicate the importance of the bubble frequency. However, the
gas bubble length is not solely determined by the two-phase
superficial velocities, the inlet geometry also has a profound
impact. This may partly explain the reason why the available
experimental results are correlated in the form of homogenous
or separated two-phase models without accounting for the
bubble frequency. The inlet effect for two-phase flow in a
micro tube also provides the possibility and direction for
optimization.
  The proposed model and correlation are assembled to predict
slug flows with four different gas bubble lengths. The ReTP
number spans a sufficient wide range. The predicted two-phase
multiplier covers the curves of laminar flow in macro tube and
the one proposed for millimeter tubes. Further studies should be
needed to clarify the effect of different bubble shape and slip
velocity between the gas and liquid phase.
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