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Abstract

Numerical simulation of gas-liquid slug flow and associated heat transfer without

phase change in a micro tube is carried out. The presence of a gas bubble causes

recirculating flow inside a liquid slug, and therefore enhances heat transfer. It is

shown that the heat transfer rate is strongly dependent on the flow pattern, i.e.,

the slug length and the flow rate of each of gas and liquid. The whole flow field is

modelled as an adherent liquid film, above which the gas and liquid slugs alternately

pass. Since the heat capacity and conductivity of gas phase are negligibly small,

while the liquid film is sufficiently thin, the overall heat transfer can be deduced

as one-dimensional unsteady heat conduction inside the liquid film with a time-

dependent heat transfer rate at the interface between the film and the slug regions.

We propose a heat transfer model as a function of parameters representing the flow

pattern and assess it in comparison with the present numerical results.
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1 INTRODUCTION

Gas-liquid two-phase flow without phase change is a possible way of heat

transfer enhancement for compact heat exchangers. The presence of gas bub-

bles separating discrete liquid slugs causes a circulation inside the liquid phase

so that the overall heat transfer is enhanced. Moreover, such gas-liquid flows

are rather stable due to an absence of explosive boiling. These facts open up

a possibility of achieving better heat transfer with moderate pressure penalty.

The structure and behavior of such tow-phase flow, however, are inherently

complex, so that basic understanding the flow and heat transfer mechanisms

is essential.

A number of experimental visualizations have been carried out in order to

clarify the flow characteristics of adiabatic gas-liquid two-phase flow in micro

tubes (Tripletter et al. 1999; Kawahara et al., 2002; Serizawa et al., 2002.). A

thorough review has been provided by Ghiaasiaan and Abdel-khalik (2001).

Recently, it has been shown that the flow pattern in a micro tube is not

uniquely determined with the flow rates of gas and liquid, but strongly depends

on the inlet condition. Once a flow pattern is reached downstream of the inlet,

it remains unchanged even far downstream (Hayashi et al., 2007; Kawaji et

al., 2009). These facts suggest a possibility to control the flow pattern so as to

achieve favorable heat transfer characteristics by modifying the inlet condition.

Advanced numerical simulation provides an opportunity to obtain local veloc-

ity and temperature information to explore the underlying physics. However,

the numerical simulation of two-phase flow in a micro conduit is not an easy
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task due to the dominant surface tension effect and the discontinuous change

of fluid physical properties at the interface. He and Kasagi (2008a) found that

the Phase-Field method coupled with the chemical potential formulation of

the surface tension can significantly suppress the parasitic flow when simulat-

ing two-phase flow at small capillary numbers. This method was applied to

study the pressure drop characteristics for bubbly and slug flows in a micro

tube (He and Kasagi, 2008b). Concerning the heat transfer, Oliver and Hoon

(1968) investigated the convective heat transfer of slug flows in a macro-sized

tube by using viscoelastic fluids. Fukagata et al. (2007) simulated slug flows

in a micro tube of 20µm ID and reported that the length of a bubble should

considerably affect heat transfer characteristics.

One of the most fundamental problems is to predict the heat transfer rate

based on the flow parameters, such as the slug lengths and flow rates of gas

and liquid. A typical phenomenological models the three-zone flow boiling

model proposed by Thome et al. (2003a & 2003b). They divide a gas-liquid

slug flow into three zones, namely, liquid slug, elongated bubble and vapor slug.

The overall heat transfer rate is given by the sum of the heat transfer rates

multiplied by the transit-time fraction of each zone. Although this model has

been successfully applied to boiling and condensation in a micro tube, there

exists no model applicable to gas-liquid slug flow without phase change.

In the present work, we carry out a series of simulation of gas-liquid slug flow

and associated heat transfer without phase change. Base on the numerical re-

sults, we decompose the whole flow field into an adherent liquid film near the

wall and the gas-liquid slug regions. It is shown that the transient temperature

fluctuation inside the liquid film is a key to predict the overall heat transfer

rate. We analyze a one-dimensional transient heat conduction problem inside

the liquid film, and then develop a heat transfer model as a function of pa-

rameters representing the flow pattern. Finally, we verify the present model
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through comparison with the numerical results.

2 MATHEMATICAL FORMULATION

A gas-liquid two-phase flow in a cylindrical pipe is considered. It is assumed

that each phase is incompressible and phase change does not take place. The

temperature is considered as a passive scalar. The gravity is neglected due to

dominance of the surface tension. The interface is captured by using the Phase-

Field method (Anderson et al., 1998). The dimensionless governing equations

are given as follows:

∇ · u⃗ = 0, (1)

∂(ρu⃗)

∂t
+ u⃗ · ∇(ρu⃗) = −∇p +

1

ReTP

∇ · [η(∇u⃗ + ∇u⃗T )]

− γ

Cn · We
C∇f, (2)

∂C

∂t
+ u⃗ · ∇C =

1

PeC

∇2f, f = Ψ′(C) − Cn2∇2C, (3)

∂(ρCpT )

∂t
+ u⃗ · ∇(ρCpT ) =

1

Pel

∇ · λ∇T, (4)

where, ρ, µ, Cp and λ denote the density, viscosity, thermal capacity and

conductivity, respectively, and all these quantities are normalized by the val-

ues of liquid. The relative concentration of liquid is denoted by C, where

C = 1 represents liquid while C = 0 gas. The interface is expressed by a

finite-thickness layer, where C changes from 0 to 1. The function of f is the

dimensionless chemical potential, and Ψ(C) is the bulk energy density defined

as C2(1 − C2)/4 (Anderson et al., 1998).

The dimensionless parameters appear in Eqs. (2-4) are defined as:

ReTP =
ρ∗

l U
∗
TP D∗

µ∗
l

, We =
ρ∗U∗2

TP D∗

σ∗ , PeC =
U∗

TP D∗

M∗µ∗ , (5)
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Pel = ReTP Prl =
ρ∗

l Cp
∗
l U

∗
TP D∗

λ∗
l

, P rl =
ν∗

l

α∗
l

, Cn =
η∗

ϵ

D∗ , (6)

where a value with an asterisk denotes a dimensional quantity, while D∗ is the

tube diameter and the subscripts of l and g represent values in the liquid and

gas phases, respectively. The thermal diffusion coefficient is denoted by α∗ =

λ∗/ρ∗C∗
p . The characteristic velocity U∗

TP is defined as the sum of superficial

liquid and gas velocities, i.e., U∗
TP = j∗g + j∗l .

Equations of (1) - (4) are satisfied both in gas and liquid phases, and the local

fluid properties of ρ, µ, λ and Cp are interpolated between those of gas and

liquid according to the position of interface. The details of the Phase-Field

method can be found in Anderson et al. (1998).

The flow is assumed to be periodic with constant gas and liquid slug lengths.

Therefore, only one period of the flow is simulated with a pair of gas and

liquid slugs. In addition, the flow is assumed axisymmetric, so that a two-

dimensional (r − z) computational domain is employed. The periodic length

Lz = L∗
z/R

∗ defines the computation domain, where R∗ is the tube radius. In

the present study, Lz is changed as 3 ≤ Lz ≤ 15 with different gas and liquid

slug lengths. A periodic boundary condition is applied at the two ends of the

computational domain, while the no-slip and fully wetted boundary conditions

are used on the tube wall. For the temperature field, a uniform heat flux q is

assumed along the wall. Because only the temperature difference is of interest,

a quasi-periodic boundary condition, namely,

∂T

∂z

∣∣∣
z=0

=
∂T

∂z

∣∣∣
z=Lz

, (7)

is applied on the both ends of the computation domain.

In all calculations, the numbers of grid points Nr and Nz in the radial and

axial directions are determined so as to keep the grid spacings below ∆z∗/R∗ =

∆z = 1/64 and ∆r∗/R∗ = ∆r = 1/64. For typical cases, we doubled the grid
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numbers in the z and r directions, and have confirmed that the effects of grid

resolution on the results shown here is sufficiently small for the purpose of the

present investigation. More detailed verification will be discussed in the next

section.

In accordance with the experiment by Hayashi et al. (2007), water and Ni-

trogen at 293 K and 1 atm are assumed as working fluids, and the surface

tension σ∗ is 0.0728 N/m. The tube diameter D∗ is fixed at 600µm, and the

characteristic velocity U∗
TP is given as 0.03∼1.5m/s. This range covers both

bubbly and slug flows according to experimental observation (Hayashi et al.,

2007). The Prandtl number in liquid is Prl = 6.96 unless otherwise stated.

3 THERMAL HYDRAULICS CHARACTERISTICS

3.1 Velocity field

We consider a typical case, where Lz = 6.0 and the void fraction ϵ = 0.29 as

shown in Fig. 1. Three different grid systems of (Nr, Nz) = (32, 192), (64, 384)

and (128, 768) are employed. Figures 2 a, b) show the grid dependency of the

axial velocity profiles at the front of bubble (FB) and the center of slug (CS),

of which locations are indicated in Fig. 1.

Since the flow is laminar, the velocity profile converges fast and the result

with radial grid resolution of ∆r = R/64 almost coincides with that with

∆r = R/128. In addition, the difference in the overall Nusselt number NuTP

defined by Eq. (14) has also been found to be less than 1%. Therefore, we

conclude that the grid resolution of (∆r, ∆z) = (64, 64) is fine enough to

simulate the velocity and thermal fields for the present study.

As shown in Fig. 2 b), the velocity profile at the center of a liquid slug is close
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to the parabolic profile of the single-phase laminar flow. The fluid at the tube

center moves faster, while that close to tube wall moves slower due to the

no-slip condition at the wall. When the fluid at the tube center approaches to

the gas-liquid interface, it is decelerated to the interfacial convection velocity.

Because of the immiscibility of the two phases, the bulk liquid impinges on

the interface, and then changes its direction to the wall. Thus, a circulation

is generated in the liquid slug. This is a primary reason for the heat transfer

enhancement discussed below. More detailed analyses of the velocity field can

be found in Fukagata et al. (2007).

To visualize the induced circulation, the contours of the dimensionless stream

function ψ relative to the bubble motion are shown in Fig. 1. Here, ψ is defined

as:

1

r

∂ψ

∂r
= uz − Ububb,

1

r

∂ψ

∂z
= −ur, (8)

where Ububb is the velocity of the moving bubble. As illustrated in Fig. 1, a

large anti-clockwise circulation is found inside the gas phase between smaller

clockwise circulations in the front and rear of a gas bubble. The circulation can

also be found in the liquid region. The present result agrees with the sketch

by Taylor (1961) and the visualization by Thulasidas et al. (1997).

In Fig. 3, the void fraction ϵ is plotted against the volumetric gas flow ratio

βg. The relationship is given by:

βg =
j∗g

j∗g + j∗l
= ϵ

U∗
bubb

U∗
TP

. (9)

The experimental results by Hayashi et al. (2007) are also shown for compar-

ison. Generally, both experimental and numerical results agree well with the

so-called Armand correlation (Armand and Treschev, 1946), which is proposed
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for conventional macro-sized tubes as:

ϵ = 0.833βg. (10)

By combining Eqs. (9) and (10), we obtain:

U∗
bubb

U∗
TP

= 1.2, (11)

which implies that the bubble velocity is about 1.2 times larger than the two-

phase mean velocity. This is because a gas slug flows around the central part

of a tube.

3.2 Temperature Field

Temperature profiles at different ReTP are shown in Figs. 4 a)-c). The top

figure shows the wall temperature distribution, while the bottom the temper-

ature distributions in the whole computational domain. The void fraction is

kept constant as ϵ = 0.3. The dimensionless temperature θ(r, z) is defined as:

θ(r, z) =
T (r, z) − 〈Twall〉
〈Twall〉 − 〈Tm〉

, (12)

where 〈Tm〉 and 〈Twall〉 denote the domain-averaged bulk and wall tempera-

tures, respectively. The bulk mean temperature 〈Θm〉 is defined over the whole

domain as:

〈Θm〉 =

∫ Lz
0

∫ R
0 ρuzCpθ(r, z)drdz∫ Lz

0

∫ R
0 ρuzCpdrdz

. (13)

Accordingly, the averaged dimensionless wall temperature is 〈Θwall〉 = 0.

Note that since we impose a constant heat flux condition at the wall, the

bulk temperature increases linearly in the axial direction. In Fig. 4, the bulk

temperature is subtracted in order to focus on the temperature fluctuation.
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The two-phase Nusselt number NuTP in each case is also shown in Fig. 4.

Here, NuTP is defined as:

NuTP =
h∗

TP D∗

λ∗
l

= −2(∂θ/∂r)wall

〈Θm〉
. (14)

At a low ReTP of 32, the thermal diffusion surpasses the convective heat

transfer. Due to the much smaller thermal capacity of gas, the temperature

in the gas phase is higher than that in liquid phase. The highest temperature

in the whole domain locates at the rear of a gas bubble. This phenomenon

agrees with the experimental observation by Monde and Mitsutake (1995), who

measured the wall temperature fluctuations at different streamwise positions in

mini channels and reported the temperature jump associated with the passage

of a gas bubble. Similar results have also been reported by Fukagata et al.

(2007). In the liquid slug region, the bulk temperature increases along the flow

direction. Under this condition, the heat transfer characteristics are essentially

the same as that in the thermally developing region of a single-phase flow.

As ReTP increases, the convection plays a more important role. Consequently,

the temperature profile inside a liquid slug converges to the profile of the

streamline shown in Fig. 1, which is the solution of the temperature field in

the limit of PeT → ∞. At high Reynolds numbers of ReTP = 390 and 760, the

wall temperature fluctuation almost vanishes. This suggests that the thermal

resistance inside an adherent liquid film between the slug and the wall becomes

dominant.

A dividing streamline, which is depicted by a broken line close to a wall in

Fig. 1 indicates that there exists no fluid exchange across this boundary. There-

fore, it is possible to decompose the whole flow field into an adherent liquid

film and the outer region, i.e., the gas-liquid slug region. The results in Fig. 4

suggest that the thermal coupling between the two regions is particularly im-

portant in predicting the overall heat transfer.
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4 Heat Transfer Modelling

4.1 Basic assumptions

The present heat transfer model is schematically shown in Figs. 5 a, b). The

whole domain is modelled as an adherent liquid film with alternately passing

gas and liquid slugs (see, Fig. 5 a)). The adherent film was referred to as

a lubricating film by Kreutzer et al. (2005), and it spans beneath both the

gas and liquid slugs. For simplicity, both gas and liquid slugs are modelled

as cylinders with radius of Rslug = R − δ. We assume that the liquid film is

stagnant and its thickness δ is constant along the wall. We have confirmed

that these assumptions are reasonable for all flow conditions considered here.

Due to the no-slip condition at the wall, we assume that the velocity inside

the adherent film is negligible so that all gas and liquid injected into the micro

tube is assumed to flow in the slug region, which is now defined as, r < Rslug.

Therefore, the ratio of the gas and liquid slug lengths, i.e., Lbubble and Lslug in

Fig. 5 a), is given by:

Lbubble

Lslug

=
βg

βl

, (15)

where βl and βg denote the volumetric flow fractions of liquid and gas, respec-

tively. Obviously, βl + βg = 1, 0 ≤ βl ≤ 1 and 0 ≤ βg ≤ 1.

Since the heat capacity and conductivity of gas are negligible, while the liquid

film thickness is sufficiently small, we model the overall heat transfer as a

one-dimensional unsteady heat conduction inside the liquid film with a time-

dependent heat transfer rate at the interface between the film and slug regions

as illustrated in Fig. 5 b).
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4.2 Formulation

Since δ ≪ R, we neglect the effect of the tube curvature inside the liquid

film and the distance from the wall is denoted by y hereafter. This transient

one-dimensional heat conduction problem in the y direction can be described

as:

∂T ∗

∂t∗
= α∗∂

2T ∗

∂y∗2
. (16)

Here, T ∗ and α∗ are the temperature and the thermal diffusion coefficient in

liquid. At the bottom wall, a constant heat flux condition is applied:

−λ∗∂T ∗

∂y∗ = q∗ = const. at y∗ = 0. (17)

At the interface between the slug and film regions, a thermal boundary con-

dition of the third kind is assumed:

−λ∗∂T ∗

∂y∗ = h∗
i (t)T

∗ at y∗ = δ∗. (18)

Note that we shift the temperature so that the bulk temperature is zero so that

T ∗ represents the temperature deviation form the bulk temperature. Here, hi

is the interfacial heat transfer rate from the liquid film to the slug region.

Considering that the heat capacity and conductivity of the gas phase are quite

small, hi should be negligible when a gas bubbule passes above the liquid film.

In addition, assuming that the heat transfer rate hslug of the liquid slug is

uniform along the streamwise direction, hi(t) can be modelled as:

h∗
i (t) = h∗

slug, 0 < t∗ < t∗l ,

h∗
i (t) = 0, t∗l < t∗ < t∗p. (19)
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Here, t∗p is the entire period, while t∗l is the duration in which the liquid slug

passes above the liquid film. Hence, t∗p = t∗l + t∗g, where t∗g is the gas slug

passage duration. In the slug region, we assume that the gas and liquid slugs

travel at the same velocity. Therefore, t∗l and t∗g are given by L∗
slug/U

∗
TP and

L∗
bubble/U

∗
TP , respectively. The time trace of h∗

i is schematically shown in Fig. 6.

Now, the major task is to find how the total heat transfer rate h∗
TP from the

bottom wall to the bulk fluid should be correlated with h∗
slug, t∗l , t∗g and δ∗.

4.3 Dimensionless parameters

The energy equation (16) are normalized as follows:

∂T

∂t
= Fo

∂2T

∂y2
, (20)

where the temperature T , time t and distance from the bottom wall y are

normalized by ∆T ∗ = q∗δ∗/λ∗, t∗p and δ∗, respectively. The Fourier number is

defined as Fo = α∗t∗p/δ
∗2.

Similarly, the boundary conditions of Eqs. (17) and (18) are respectively nor-

malized as:

∂T

∂y
= −1 at y = 0, (21)

∂T

∂y
= −Bihi(t)T at y = 1. (22)

Here, Bi is the Biot number defined as Bi = hiδ
∗/λ∗ and hi is normalized by

its mean value as hi = h∗
i /h

∗
i so that:

hi(t) = β−1
l , 0 < t < βl,

hi(t) = 0, βl < t < 1. (23)
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Here, t∗l /t
∗
p is replaced with βl, since we assume that the gas and liquid flow

in the slug region is homogeneous.

From the above, the heat transfer rate is governed by the three dimensionless

parameters, i.e., Bi, Fo and βl.

4.4 Heat transfer model

4.4.1 Heat transfer rate

First, we consider the mean temperature profile inside a liquid film. Since

there exists no heat source, the time-averaged temperature profile should be

linear. Considering the boundary condition of Eq. (21), the mean temperature

profile is given by:

T (y) = T (1) + (1 − y), (24)

where the over-bar represents time-averaging. Equation (24) only gives us the

relative temperature inside the liquid film. The mean temperature T (1) at the

interface between the film and slug regions is determined as a result of the

heat transfer from the liquid film to the bulk.

By applying time-averaging to Eq. (22), the following condition for T (1) is

obtained:

dT

dy
= −1 = −Bihi · T (1) = −Bi{hi · T (1) + h′

i · T ′(1)}. (25)

Since hi = 1, the interfacial mean temperature T (1) is obtained from Eq. (25)

as:

T (1) = Bi
−1 − h′

i · T ′(1). (26)
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Substituting Eq. (26) into Eq. (24), the mean bottom temperature T (0) is

obtained as:

T (0) = Bi
−1 − h′

i · T ′(1) + 1. (27)

The overall heat transfer rate hTP from the bottom wall to the bulk is calcu-

lated as:

hTP =
q

T (0)
= Fo

[
{Bi

−1 − h′
i · T ′(1)} + 1

]−1

. (28)

Consequently, the Nusselt number Nuf of the liquid film becomes:

Nuf =
hTP

Fo
=

[
{Bi

−1 − h′
i · T ′(1)} + 1

]−1

. (29)

The above result suggests that Nuf is determined as a result of two thermal

resistances in the slug and film regions, which appear as the first and second

terms in the square bracket on the right hand side of Eq. (29), respectively.

In addition, the first term, i.e., the thermal resistance inside the slug region,

includes the correlation between the fluctuations of the heat transfer rate

hi and the interfacial temperature T (1). If we neglect the correlation term,

Eq. (29) reduces to:

Nuf 0 = (Bi
−1 + 1)−1. (30)

The above model is referred to as ”crude model” and the prediction by this

model is denoted by Nuf 0. Note that Nuf 0 is solely a sum of two mean thermal

resistances in the slug and film regions, which appear in the first and second

terms in Eq. (30).

In order to show the significance of the correlation h′
i · T ′(1) in Eq. (29), we

numerically solve the one-dimensional heat conduction equation (21) under

the boundary conditions of Eqs. (21) and (22) with systematically changing
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the dimensionless parameters in the range of 0.1 ≤ Bi ≤ 10, 0.1 ≤ Fo ≤ 10

and 0.1 ≤ βl ≤ 0.9, respectively.

The comparison between the numerical solutions Nuf and the crude-model

predictions Nuf 0 is shown in Fig. 7. It is found that the neglect of h′
i · T ′(1)

results in significant overestimate of Nuf .

4.4.2 Two-layer heat conduction model

The results in the previous subsection suggest that the correlation h′
i · T ′(1)

should be appropriately taken into account in order to predict the overall

heat transfer. However, due to the coupling of two fluctuating quantities of hi

and T (1) appearing in Eq. (22), the analytical expression of thermal transient

behavior inside the film is difficult to obtain, and even if it is possible, the

resultant solution usually becomes too complicated to be used in real applica-

tions. Therefore, in this section, we derive an approximate solution based on

a simple two-layer heat conduction model.

Before going into the details, a typical numerical result of transient thermal

behavior inside the liquid film at Fo = 0.25, Bi = 1.0 and βl = 0.5 is shown

in Fig. 8. It is observed that the temperature fluctuation mainly occurs in the

near-interface region, i.e., 1 − ηt ≤ y ≤ 1, while the temperature is almost

steady in the outer region, i.e., 0 ≤ y ≤ 1 − ηt. Here, the thermal penetra-

tion thickness ηt can be estimated by the liquid-slug passage time βl and the

dimensionless conductivity Fo as ηt ∼
√

Foβl.

In view of the above result, we divide the liquid film into two layers. In the

first layer adjacent to the interface, the temperature temporally fluctuates in

response to hi. In the second layer, the temperature is assumed to be steady

and its profile is given by Eq. (24). Obviously, estimating the temperature

fluctuation in the first layer is essential. To the first approximation, we assume
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the temperature profile T1 inside the first layer is uniform in the y direction

so that T1 is solely a function of time. We can derive a macroscopic energy

balance in the first layer as:

ηt
dT1

dt
= Fo(1 − BihiT1), (31)

where the first term on the right-hand-side represents heating from the bottom,

i.e., the interface between the first and second layer, while the second term

corresponds to the cooling at y = 1 due to the passage of a liquid slug above

the film.

During the liquid slug passage period, i.e, 0 < t < βl, the interfacial heat

transfer rate is constant as hi = β−1
l according to Eq. (23). Therefore, the

analytical solution of T1 is obtained as:

T1(t) = Cexp(−BiFo

βlηt

t) +
βl

Bi

at 0 < t < βl. (32)

Similarly, during the gas passage period, i.e., βl < t < 1, hi becomes zero.

Therefore,

T1(t) = Cexp(−BiFo

ηt

) +
βl

Bi

+
Fo

ηt

(t − βl) at βl < t < 1. (33)

Since we consider a fully developed thermal field, the proportional coefficient C

is determined so as to satisfy a temporally-periodic condition, namely, T1(0) =

T1(1), as:

C =
Fo(1 − βl)

ηt{1 − exp(−BiFo
ηt

)}
. (34)

From Eqs. (32-34), the mean interfacial temperature is calculated as:

T1 = T (1) =
1 − β2

g

Bi

+
Foβ2

g

ηt

{
1

1 − exp(−BiFo
ηt

)
− 1

2

}
. (35)
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Substituting into Eq. (24), the bottom wall temperature is obtained by T (0) =

T (1) + 1. Eventually, the Nusselt number Nuf model predicted in the present

two-layer model is given by:

Nuf model =
1

T (0)
=

[1 − β2
g

Bi

+
Foβ2

g

ηt

{
1

1 − exp(−BiFo
ηt

)
− 1

2

}
+ 1

]−1

.(36)

Here, we briefly remark on the thermal penetration length ηt. As we discussed

above, ηt is estimated as ηt = α
√

Foβl, where α is an arbitrary constant in

the order of 1. Since ηt can not exceed the liquid film thickness, ηt is defined

as:

ηt = Min(α
√

Foβl , 1). (37)

We confirm that α = 0.55 provides the best fit to the numerical data. The

comparison between the numerical solutions Nuf and the model predictions

Nuf model over the prescribed ranges of Fo, Bi and βl is shown in Fig. 9.

The present model (36) reduces to the crude model (30) when Fo/ηt ≪ 1 and

Bi ≪ (Fo/ηt)
−1. The ratio Nuf model/Nuf 0 of the predictions by the present

and crude models at the volumetric liquid ratio of βl = 0.5 is shown in Fig. 10.

In accordance with the above consideration, when Fo ≪ 1.0, Nuf model/Nuf 0

is almost equal to 1.0, indicating that the crude model (30) provides good

prediction. On the other hand, when Fo is larger than 1, the contribution of

h′
i · T ′(1) in Eq. (29) becomes important so that Nuf model/Nuf 0 significantly

deviates from 1.0. In such cases, the present model (36) needs to be used

instead of the crude model (30).
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5 Model Verification

5.1 Heat transfer model for gas-liquid slug flow

The Nusselt number NuTP of gas-liquid slug flow can be related to Nuf as:

NuTP =
h∗

TP D∗

λ∗
l

= Nuf (Bi, Fo, βl)
(

δ∗

D∗

)−1

. (38)

where D∗ is a tube diameter. In real experiments, the volumetric liquid flow

ratio βl is usually given. Hence, the remaining parameters are Bi, Fo and the

dimensionless film thickness δ∗/D∗. In order to determine the three parame-

ters, the heat transfer rate h∗
slug in the liquid slug region and the film thickness

δ∗ need to be predicted. In the following subsections, we will discuss modelling

of these quantities.

5.2 Heat transfer rate in liquid slug

As discussed in the next subsection, the liquid film thickness is generally much

thinner than the tube diameter so that it is negligible in the liquid slug region.

In addition, the surface tension is so strong that the shapes of a gas bubble

at the front and rear parts are kept almost spherical in all cases considered.

Therefore, that the change of the surface tension should not significantly in-

fluence the dynamics of a circulation inside a liquid slug.

The remaining parameters govern the flow field inside the liquid slug are the

Reynolds number ReTP and the liquid slug length Lslug. Therefore, the heat

transfer in liquid slug should be determined by the following dimensionless

parameters.

Nuslug =
h∗

slugD
∗

λ∗
l

= f(ReTP , Lslug, P rl), (39)
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Here, we remark on the Reynolds number effect. As shown in Fig. 2, the

velocity profile at the center of liquid slug is almost identical to the parabolic

profile of the single-phase laminar flow, which is independent of the Reynolds

number. Actually, we have confirmed that the flow field in the liquid slug is

hardly influenced by ReTP under a wide rage of ReTP from ReTP = 32 to 720.

Therefore, the Reynolds number effect on the velocity field is considered to be

minor as far as the flow is laminar. Hence, Eq. (39) is further simplified as:

Nuslug = f(Pel, Lslug). (40)

In the present study, we have carried out numerical simulations with system-

atically changing Pel and Lslug as 100 < Pel < 6000 and 1 < Lslug < 7, and

obtain the correlation for Nuslug by fitting these data. It is expressed as:

Nuslug =
h∗

slugD
∗

λ∗
l

= 24.2 + 0.54Pe0.45
l (L∗

slug/D
∗)−1.34. (41)

Good agreement between the numerical results and Eq. (41) is confirmed in

Fig. 11.

5.3 Liquid film thickness

Bretherton (1961) first applied a lubrication theory in order to predict the

shape of the liquid film formed between the spherical bubble front and the

flat film in the far downstream. In his analysis, the inertial force was neglected

due to high viscosity of fluid. As a result, the film thickness is determined by

the Capillary number Ca as:

δ∗

D∗ = 0.67Ca2/3, where Ca =
µ∗

l U
∗
bubble

σ∗ . (42)

Recently, Han and Shikazono (2008) carried out systematic measurement of

the liquid film thickness formed behind a moving liquid slug in micro tubes by
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employing a laser confocal technique. They show that the experimental results

agree well with Eq. (42) at small Ca, while Eq. (42) underestimates the film

thickness when Ca > 0.02 due to the inertia effect.

In Fig. 12, Eq. (42), the experimental data of Han and Shikazono (2008) and

the present numerical data are plotted. It should be noted that at least 6 grid

points generally exist inside the liquid film in the present calculations. We

confirmed that doubling the radial grid number causes only 2% difference in

the film thickness. It is found that the present numerical results show signifi-

cant deviations from both Eq. (42) and the experimental data at low Ca. The

possible reason for this discrepancy is difference in the bubble length. A closer

look at the experimental data reveals that the film thickness is increased when

the bubble length is small, i.e., Lbubble/R < 6. Similar trend is also observed in

the present numerical data. When the bubble length is short, the interaction

between the bubble front and rear becomes important. This may cause an

increase in the film thickness.

Although it might be possible to develop a new correlation for the film thick-

ness by taking into account the bubble length, it is out of the scope of the

present study. Instead, we employ a rather simple model proposed by Suo and

Griffith (1964). In their model, it is assumed that the liquid film with thick-

ness of δ∗ is stagnant, while the gas and liquid slug travels at the same speed

over the film. Therefore, the effective tube radius is reduced to R∗ − δ∗. This

causes the difference between U∗
TP and U∗

bubble so that:

(
1 − δ∗

R∗

)2

=
U∗

TP

U∗
bubb

=
ϵ

βg

. (43)

By using the Armand correlation (10), the film thickness is estimated as:

δ∗

R∗ = 0.087. (44)
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Although this model cannot predict the Capillary number effect on the film

thickness, it predicts the present numerical data fairly well as shown in Fig. 12.

5.4 Comparison with numerical results

By substituting Eqs. (41) and (44) into Eq. (38), we can finally predict NuTP .

The comparison between the model predictions and the present numerical

results is shown with solid circles in Fig. 13. The predictions by the crude

model of Eq. (30) are also plotted by open circles for comparison.

The Nusselt number obtained in the present simulation varies from 2.85 to

10.25 depending on the flow pattern. This is in contrast with the single phase

flow, in which the the Nusselt numbe is constant, i.e., Nu = 4.36 under a

constant heat flux condition, regardless of the Reynolds and Prandtl numbers.

In accordance with the analyses in the previous section, the crude model gener-

ally overestimates NuTP due to the neglect of the correlation term in Eq. (29).

It is, however, removed by employing the present model. It was indicated that

the thermal coupling between the slug and film regions have to be appro-

priately taken into account in order to predict the heat transfer rate in a

gas-liquid slug flow.

It is confirmed that the present model still has a error of around 25 %. This

scattering is attributed to the errors in predicting h∗
slug and δ∗ by Eqs. (41)

and (44). More sophisticated models are necessary to improve the prediction.

Nonetheless, we demonstrated that the importance of the thermal coupling

between the liquid film and slug regions, and presented its appropriate mod-

elling.
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6 CONCLUSIONS

We conducted a series of numerical simulations of gas-liquid slug flows and

associated heat transfer without phase change in a micro tube. It is found

that the Nusselt number strongly depends on the flow pattern, and is up to

2.4 times higher than that of the single-phase laminar flow. This indicates that

the gas-liquid slug flow without phase change is promising for heat transfer

enhancement in practical applications.

The streamline function in the entire flow domain shows that the gas-liquid

slug flow is generally characterized by an adherent liquid film with alternate

passage of gas and liquid slugs above the film. In order to predict the effects

of the flow pattern on the heat transfer, we model the overall heat transfer

as one-dimensional unsteady heat conduction inside the liquid film with a

time-dependent heat transfer rate between the film and slug regions.

Detailed analyses of the above one-dimensional model reveal that the overall

heat transfer rate depends on not only respective mean thermal resistances

in the film and slug regions, but the correlation between the fluctuations of

the heat transfer rate and temperature at the interface between the liquid

film and slug regions. In the present study, we first proposed a heat transfer

model which takes into account the correlation, and verify it with the present

numerical results over wide ranges of the slug length and the flow rate of each

of gas and liquid.

The present model prediction can be further improved by elaborating the

models for the liquid film thickness and the heat transfer rate in the liquid

slug. From a practical point of view, the present model is useful in optimizing

the flow pattern so as to achieve the highest heat transfer performance with

the minimum pressure penalty. A phenomenological model for the pressure

drop has been also proposed by He and Kasagi (2008b). Combining such a
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pressure drop model with the present heat transfer model is promising for the

optimization of the flow pattern. These remain to be future work.
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Roman symbols

C concentration

Cn Cahn number, ϵ/R

Cp thermal capacity, [J/kg K]

Ca Capillary number, ηLU/σ

D tube diameter, [m]

f chemical potential

G volumetric flux, [m2/s]

h heat transfer coefficient, [W/K m2]

j superficial velocity, [m/s]

L longitudinal length, [m]

M dimensionless mobility

Nu Nusselt number

p pressure, [Pa]

PeC concentration Peclet number,UD/(MµL)

Pel thermal Peclet number,ρLUCpLD/λL

Pr Prandtl number
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q heat flux, [W/m2]

r radial direction, [m]

R tube radius, [m]

Re Reynolds number, ρLUD/ηL

t time, [s]

T temperature, [K]

u⃗ velocity

We Weber number, ρLU2D/σ

U mean velocity, [m/s]

z longitudinal direction, [m]
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α thermal diffusion coefficient [m2/s]

β volumetric flow ratio

δ residual film thickness, [m]

ηϵ interface thickness parameter

ϵ void fraction

σ surface tension coefficient, [N/m]

µ viscosity, [Pa s]

ν kinematic viscosity, [m2/s]

λ thermal conductivity, [W/m K]

Ψ dimensionless bulk free energy

ψ dimensionless stream function

ρ density,[kg/m3]

θ dimensionless temperature

Θ dimensionless mean temperature
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Subscripts

bubble gas bubble

film residual film

g gas phase

i interface between a liquid film and slug regions

l liquid phase

m bulk mean

slug gas/liquid slug region

TP two-phase

wall wall

z longitudinal

Operator

〈·〉 domain average

· time average
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Fig. 1 Bubble shape and relative streamlines at α = 0.29 and ReTP = 288.

thick solid line: gas-liquid interface, thick broken line: dividing stream-

line between an adherent liquid film and gas-liquid slugs.

Fig. 2 Velocity profiles with different grid spacings at a) the front of a bubble

and b) the center of slug.

Fig. 3 Relationship between the volumetric gas flow ratio βg and void fraction

ϵ.

Fig. 4 Temperature distributions at different Reynolds numbers ReTP (top:

wall temperature, bottom: counter plot in the whole computational

domain) The temperature is normalized by the temperature difference

between the wall and the bulk. The dotted line in the top figures

represents the mean wall temperature, while the thick broken line in

the bottom figures the interfacial location. a): ReTP = 32, b): ReTP =

112, c): ReTP = 390.

Fig. 5 Conceptual figures of the present heat transfer model a) Decompo-

sition of the entire flow field; b) Heat transfer modelling inside the

adherent liquid film.

Fig. 6 Heat transfer rate at the interface between the liquid film and slug

regions.

Fig. 7 Comparison between the Nusselt number Nuf of the one-dimensional

conduction problem and the prediction by the crude model (30)

Fig. 8 Transient behavior of temperature field in the liquid film at Fo = 0.25,

Bi = 1.0 and βl = 0.5.

Fig. 9 Comparison between the numerical solutions Nuf and the model pre-

diction Nuf model

Fig. 10 Ratio of the Nusselt numbers predicted by the present and crude mod-

els.

Fig. 11 Comparison between numerical solutions Nuslug and the model pre-

diction Eq. (41)
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Fig. 12 Thickness of the adherent liquid film as a function of Ca.

Fig. 13 Comparison between the results of numerical simulation and the model

predictions. Open circle: the crude model (30), Solid circle: the present

model (36)
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