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Abstract

We carry out direct numerical simulation (DNS) of scalar transport
and mixing in a coaxial round jet issued into a small model combustor.
The Reynolds number based on the diameter and bulk mean velocity of
the outer annular jet is 1320. The outer-to-inner bulk mean velocity ratio
is fixed at 6.4. Analysis is made on the detailed mechanism of scalar trans-
port modulated by an active control of the near-field large-scale vortical
structure. The main interest lies in dynamics of the vortical structure cre-
ated by the present active control method, growth of streamwise vorticity,
and the associated scalar transport process downstream of the nozzle exit.
The mixing enhancement is found to be due to three-dimensional break-
down of the primary vortex rings in the inner shear layer. This breakdown
process is caused by the streamwise vortical structure. Budget analysis
reveals different dynamic processes taking place in the evolution of stream-
wise structure in the inner and outer shear layers. The process in the outer
shear layer is essentially similar to that in plane mixing layers, while the
structure in the inner shear layer is convected toward the central axis
before stretched axially by the inner vortex rings.

1 Introduction

Coaxial jet flows are widely used in industrial applications, such as gas turbine
combustors and chemical reactors, where mixing of different fluids takes place.
There are many devices to passively control the flow field inside such equipment
(e.g. swirlers and non-circular nozzles) in order to improve the performance
at its design point. However, for small-scale combustors, such as those used
in distributed generation systems, the power output often shifts off the design
point. In such cases, the passive control methods are no longer effective and we
need to rely on some active control methods.

Previous experimental studies have demonstrated that the performance of
a coaxial jet combustor can be controlled by manipulation of the near-field
large-scale vortical structure, which leads to modulation of reactant transport.
Suzuki et al. [1] developed a special nozzle called ‘intelligent nozzle’, which has
eighteen miniature electromagnetic flap actuators mounted on the periphery of
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the outer nozzle, and can manipulate the near-field vortical structure in the jet.
Kurimoto et al. [2] extended this technique to a coaxial jet combustion, as shown
in figure 1, and successfully stabilized the unsteady motion of the base of a lifted
methane-air flame even under a blow-off condition. Kurimoto [3] also reduced
the entire heat release fluctuation of bluff-body stabilized flames inside a small
model combustor. Based on the experimental results, he suggested that the
controllability of the fuel concentration distribution upstream of the flame front
should be an important factor for the performance of the model combustor.
Recently, Angele et al. [4] experimentally investigated the evolution of three-
dimensional structure in a free coaxial jet controlled by the intelligent nozzle [2].
By using stereoscopic particle image velocimetry (PIV), they observed strong
streamwise vortices in the inner part of the jet, and conjectured that those
vortices might play important roles for the mixing enhancement. Despite these
experimental efforts, however, detailed mechanism of this control still remains
unclear.

Direct numerical (DNS) and large-eddy (LES) simulations have been re-
ported for various type of jet flows, e.g. DNS of a free round jet by Danaila et
al. [5] and Boersma et al. [6], DNS of a free coaxial jet by da Silva et al. [7], and
LES of a confined coaxial jet at practically high Reynolds numbers by Akselvoll
and Moin [8]. These studies revealed detailed dynamics of the vortical structure
in uncontrolled jets, and demonstrated that DNS and LES serve as powerful
analysis tools.

The objective of the present study is to investigate by means of DNS the de-
tailed dynamics of large-scale vortical structure in a coaxial jet controlled by the
intelligent nozzle [2]. The present control aims at better mixing of scalar, which
corresponds to mixing of fuel and air, under a relatively low Reynolds number
condition. Therefore, we mainly focus upon the vortical structure associated
with the initial scalar transport right downstream of the nozzle, which largely
affects the mixing behaviour in the further downstream region. In section 2, we
present the numerical method used and model the control input produced by
the intelligent nozzle. The overall effects of the control amplitude and frequency
are surveyed in section 3. In section 4, scalar transport by primary vortex rings
is briefly described in the case where the best mixing is achieved in section
3. Subsequently, in section 5, the detailed mechanism of large-scale structure
associated with the initial scalar transport observed in the present DNS is dis-
cussed. Finally, in section 6, conclusions are drawn together with the summary
of mechanisms revealed by the present DNS.

2 Numerical method

Figure 2 shows the computational model used in this study. Coaxial central and
annular jets are issued into a cylindrical space. Diameters (radii) of the inner
and outer nozzles and the cylinder are denoted as Di (Ri), Do (Ro), and Dw

(Rw), respectively. The outer-to-inner diameter ratio, Do/Di, is two and the
expansion ratio, Dw/Do, is also two.
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The governing equations are the incompressible continuity and Navier-Stokes
equations, and the transport equation of a passive scalar:

∇ · u = 0, (1)

∂u
∂t

= −∇ · (uu)−∇p+
1

Re
∇2u, (2)

∂c

∂t
= −∇ · (cu) +

1
Re Sc

∇2c, (3)

where u, p, t, and c denote the dimensionless velocity vector, pressure, time, and
passive scalar concentration, respectively. All the flow variables are normalized
hereafter by the bulk mean velocity of the annular jet, Um,o, and the outer
nozzle diameter, Do. Focusing on a small methane/air combustor, of which
power output is 0.5–1 kW, the Reynolds number Re based on Um,o and Do is
set at 1320. The outer-to-inner bulk mean velocity ratio, β = Um,o/Um,i, is 6.4.
Namely, the outer-to-inner momentum flux ratio is 41, which corresponds to
the equivalence ratio of 0.72 if we assume the complete mixing of methane from
the central nozzle and air from the annulus. The Schmidt number Sc of the
passive scalar is assumed to be unity, which nearly corresponds to the diffusion
of methane into air at the standard temperature and pressure.

Fully developed laminar velocity profiles are assumed at the inlet of the
coaxial jet. White noise with its amplitude of one percent of Um,o is superposed
on the streamwise component of the jet inlet velocity. The local scalar concen-
tration c is represented by the mixture fraction of the central jet fluid, which
takes the values of c = 1 and c = 0 for the inner and outer nozzles, respectively.
The convective boundary condition [8] is employed for both velocity and scalar
concentration at the outlet of the computational domain. The global mass con-
servation is enforced by multiplying a uniform correction factor (1 + α) to the
outlet velocity profile at every computational time step. The typical magnitude
of α is 10−8. On the lateral and bottom walls, no-slip boundary condition is
imposed for the velocity and the scalar flux is fixed at zero.

A schematic diagram of the control effect is shown in figure 3. As shown in
the figure, the actuation by the intelligent nozzle is modelled as a spatiotemporal
change of the inlet velocity profile. We focus on the axisymmetric mode of the
control, i.e. inphase motion of all the actuators. The outer nozzle radius, Ra,
is contracted sinusoidally as

Ra (t) = Ro − ε [1− cos (2π Sta t)] , (4)

where the Strouhal number, Sta, and ε denote the normalized frequency and
amplitude of flapping motion, respectively. Since the volumetric flow rate is kept
constant, the axial and radial velocities at the annular jet exit are modelled as
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uz (r, θ, 0, t) = U0 (r;Ra (t) , Ri)
/
Ra (t)2 −R2

i

R2
o −R2

i

, (5)

ur (r, θ, 0, t) =
dRa (t)
dt

= −2π Sta ε sin (2π Sta t) , (6)

where U0 (r; a, b) denotes the analytical solution of fully developed laminar flow
in an annular pipe, of which outer and inner radii are a and b. The inlet velocity
profile of the inner jet is kept parabolic during the control. Figure 4 shows the
radial profiles of the inflow streamwise velocity at different control phase angles.
By periodically contracting the outer radius of the annular nozzle, the maximum
streamwise velocity of the annular jet increases by more than 10%.

The governing equations (1)-(3) are discretized on the cylindrical coordinate
system by using the energy-conservative second-order central difference scheme
[9], except that the total variation diminishing (TVD) scheme [10] is used for
the advection term of equation (3). The computational domain consists of
64×64×256 grids along the radial (r), azimuthal (θ), and axial (z) directions,
respectively. As shown in figure 5, the grid is unequally spaced in the radial
direction, so that it is clustered near the lateral wall and around the two free
shear layers (i.e. near the inner and outer nozzle edges). The grid is uniform in
the axial and azimuthal directions. The axial domain length, Lz, is set to 8Do,
so that most of the important flow structure of a confined annular jet [11] can
be captured.

The low storage third-order Runge-Kutta/Crank-Nicolson scheme [12] is
used for the time integration, and the delta-form fractional step method [13]
is employed for the pressure velocity coupling. The dimensionless time step,
∆t, is 0.002 for all simulation cases. Time marching is started with a com-
pletely stationary field with zero-concentration fluid. The numerical method
used in the present study is basically the same as that of the previous DNS of
pipe flow [9]. The pressure-Poisson equation with the inflow and outflow bound-
ary conditions is solved by using FFT with the aid of reflection operation [14],
as shown in figure 6. This algorithm is equivalent to apply a discrete cosine
transform to an interpolated pressure, Φk+1/2 = (φk + φk+1) /2.

Validation and verification of the present simulation method are reported in
detail in [15]. For example, as shown in figure 7, the mean and root-mean-square
(rms) fluctuations of the axial velocity along the central axis of an uncontrolled
confined annular jet computed by the present simulation code are in good agree-
ment with the experimental data of [11]. The number of grids as well as the size
of computational domain used is found sufficient for obtaining unique profiles
of statistical quantities [15]. The influence of the convective outflow condition
is investigated by simulations of a confined annular flow with various domain
lengths. Figure 8 shows the rms fluctuations of the streamwise velocity at
Do/Di = 2.09, Dw/Do = 1.99, and Re = 1270 (the same conditions as [11]).
With Lz/Do = 8, the position and intensity of the peak are well reproduced
and the near field statistics are converged to a unique profile.
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In the following analysis, we often use phase-averaged statistics. According
to Hussain and Zaman [16], an instantaneous value (g̃) of any quantity (g) is
decomposed as:

g̃ (r, θ, z, t) = 〈g〉ψ (r, z) + g′ (r, θ, z, t) . (7)

Here, 〈•〉ψ denotes the phase-average, which is the summation of the time mean
and the periodic component at the control phase-angle of ψ, i.e.

〈g〉ψ (r, z) ≡ lim
N→∞

1
2πN

N∑
n=1

[∫ 2π

0

g̃ (r, θ, z, tψn) dθ
]

(8)

where tψn = 1
2π Sta

(ψ + 2nπ), and g′ is the residual random component. The
phase-averaged rms fluctuations of g̃ is then defined as

〈g〉ψ,rms (r, z) ≡
√
〈g′2〉ψ (r, z)

=

√√√√ lim
N→∞

1
2πN

N∑
n=1

[∫ 2π

0

g′2 (r, θ, z, tψn) dθ
]
. (9)

3 Overview of the control effects

Instantaneous vortical structure and concentration of the scalar ejected from the
central nozzle are visualized in figure 9. The vortical structure is identified by
the second invariant of the deformation rate tensor. Four uncontrolled cases at
different values of β (velocity ratio) are shown. For the controlled case, only one
case of β is shown because the flow pattern is found not significantly dependent
on β. The control amplitude and frequency are ε = 0.0125 and Sta = 1, at which
the best mixing is achieved in the experiment [17]. Without control, a low-Re
coaxial jet can generate a variety of flow patterns depending on β, as shown
in figures 9(a)-(d). An initially laminar flow undergoes transition to turbulence
in a high β case. Roll-up vortices from the inner shear layer can clearly be
seen due to the high shear between the outer and inner jets (figure 9(a)). For
the cases of small β, another flow pattern appears, where turbulent motion is
suppressed and mixing is very poor (figures 9(b) and (d)). At a certain β of
8 < β < 10, a special flow pattern appears (see, figure 9(c)); the diverging jet
forms a large recirculation bubble at the center of the domain. Similar flow
patterns have been experimentally observed in a confined annular jet at low
Reynolds numbers [11]. With control, however, such diversity of flow patterns
vanishes. Large-scale vortex rings are generated in the near field of the nozzle
and they promptly break down intensifying the scalar mixing (see, figure 9(e)).

The mean velocity fields are shown in figure 10 for two different cases of
ε = 0.001 and ε = 0.01 at β = 6.4 in order to investigate the effects of control
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amplitude. The control frequency is kept at Sta = 1. Note that the radial
positions of r/Do = 0.25 and 0.5 correspond to the inner and outer shear layers
of the intelligent nozzle, respectively. The velocity vectors are parallel to z-axis
at z/Do = 4 in both cases. The upstream flow structure largely depends on
ε. With small ε, the annular flow reattaches to the lateral wall in a shorter
distance than the large ε case. The annular flow detaches just downstream of
this reattachment point and it forms a recirculation zone around the central
axis.

The phase-averaged azimuthal vorticity profiles for Sta = 0.5, 1 and 1.5 are
shown in figure 11. As is clear from comparison between the cases of Sta = 0.5
and 1, the interval of two successive vortex rings is lengthened with decreasing
Sta. Moreover, the magnitude of vorticity is reduced for smaller Sta, because
the radial velocity at the inlet, which determines the initial roll-up vorticity, is
proportional to Sta in the present study as defined in equation (6). Namely,
intermittent generation of weak vortices causes poorer mixing between the jet
and ambient quiescent fluid at smaller Sta. On the other hand, comparison
between the cases of Sta = 1 and 1.5 indicates that the path of vortex rings is
straightened with increasing Sta. This suggests that vortex rings are stabilized
at higher Sta. As will be discussed in section 5.4, the stretching motion along
the central axis is essential for the development of streamwise vortical structure
which destabilize the vortex rings. At higher Sta, this stretching motion is
weakened as the vortex rings come too close to each other. The development of
streamwise vortices is suppressed accordingly. Thus, mixing becomes poor also
at higher Sta. Due to these two mechanisms, there exists an optimum value of
Sta to obtain the best mixing.

Figure 12 summarizes the effect of the control parameters, i.e. amplitude and
frequency. Here, based on the observation above, we choose the reattachment
length, LR, as a representative measure of the control effect. The reattach-
ment length is defined as a streamwise distance between the nozzle exit and the
reattachment point on the lateral wall, where ∂uz/∂r is zero on average. As
shown in figure 12(a), LR is much shorter for ε ≤ 0.0025 than for ε ≥ 0.003 at
Sta = 1. The sudden jump of LR between ε = 0.0025 and 0.003 indicates dis-
continuous change of the flow structure observed in figure 10. Beyond ε = 0.003,
LR decreases monotonically as the control amplitude increases due to the rapid
growth of the outer shear layer. On the other hand, as shown in figure 12(b), LR
smoothly varies with Sta with keeping ε at a sufficiently large value of 0.0125.
In the figure, LR takes its minimum value when Sta is around 0.7. The existence
of the minimum LR suggests that the two mechanisms discussed in figure 11
restrict the development of the shear layers.

In order to study the effect of Sta on the scalar mixing, radial distributions
of the phase-averaged scalar concentration at different axial positions are shown
in figure 13 for Sta = 0.5, 1 and 1.5. Among the three Sta tested, the case of
Sta = 1 achieves the best mixing at z/Do = 2. In this case, the concentration
has less fluctuations among the five control phase-angles than that of Sta = 0.5,
and the scalar permeate the radial extent more than that of Sta = 1.5. Also, in
this case, the concentration starts decreasing at the nearest position from the
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inlet (see, the profiles at z/Do = 0.5 of three figures). In the case of Sta = 0.5,
the scalar has large fluctuations even at z/Do = 2 due to the intermittent
generation of the vortex rings as has been observed in figure 11(a). In the case
of Sta = 1.5, the upstream mixing region is narrower in radial direction than
that of Sta = 1, and thus the fluid with high concentration remains near the
central axis even at z/Do = 2.

The effect of control frequency on the mean scalar concentration along the
central axis is examined. Comparison between the previous experimental re-
sults of a controlled free coaxial jet [3] is shown in figure 14(a). Despite the
difference in the Reynolds number and flow configuration, the present computa-
tional results are in fair agreement with the experimental data. The agreement
is especially good for Sta = 1 and 1.3, where good mixing is achieved. Figure
14(b) shows the effect of control frequency in the present study. Regardless of
the frequency selected, mixing is better than the uncontrolled case. The cases
studied are classified into three regimes: (i) Sta < 0.7; (ii) 0.7 < Sta < 1.1;
(iii) 1.1 < Sta. In regimes (i) and (iii), mixing is relatively weak as has been
shown in figure 13. On the other hand, the regime of (ii) achieves the earliest
attenuation of the concentration along the central axis among all the cases ex-
amined, which supports the observation in figure 13. In this regime, the profiles
are relatively independent of Sta, which implies that the mixing enhancement
is achieved by a certain mechanism which is not strongly affected by Sta. This
mixing enhancement mechanism is studied in later sections.

4 Scalar transport by primary vortex rings

Detailed mechanism of the scalar transport is studied by examining the phase-
averaged statistics. Here we focus on the case of ε = 0.0125 and Sta = 0.9,
where strong mixing along the central axis was achieved.

The distribution of phase-averaged azimuthal vorticity, 〈ωθ〉ψ, is shown in
figure 15 for five different control phases, i.e. ψ = 2πM/5 with M being 0, 1,
2, 3 and 4. The figure indicates how the present control generates the large-
scale vortical structure in the near-field. We can clearly observe that a pair of
counter-rotating vortex rings are discharged at the frequency of control. This
roll-up of the inner and outer shear layers is the primary effect of the present
control.

Effects of the discharged vortex rings on the phase-averaged velocity, 〈uz〉ψ,
and scalar, 〈c〉ψ, fields are shown in figures 16 and 17, respectively. There
are alternatively high- and low-speed regions along the streamwise direction
both in inner and outer jets (see, figure 16). Especially, a backflow region is
found near the central axis, which is due to the inner roll-up vortices with
negative azimuthal vorticity. Due to this backflow, the central jet is stagnated
around z/Do = 0.5. The scalar concentration along the central axis abruptly
drops upstream of the stagnation region (see, figure 17). Most of the scalar is
then wound up by the inner vortex ring, not by the outer one, and convected
downstream.
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5 Production processes of streamwise vorticity

As shown above, dynamics and downstream evolution of the inner vortex rings
are important for the mixing enhancement. Therefore, in this section, the dy-
namics of large-scale three-dimensional coherent structure related to the primary
vortex rings are investigated in detail. Special attention is paid to the evolution
of streamwise vortices.

5.1 Streamwise vortical structure around the primary vor-
tex rings

Distributions of the phase-averaged rms fluctuations of the radial, 〈ωr〉ψ,rms,
and axial, 〈ωz〉ψ,rms, vorticity are shown in figure 18 for the control phase-
angle of ψ = 1.6π. These quantities indicate how the initially two-dimensional
large-scale vortex rings generate three-dimensional structure. A remarkable
observation is that 〈ωz〉ψ,rms is highly localized, e.g. at (r/Do, z/Do) = (0.1,
0.8), (0.6, 0.6) and (0.6, 1.3), while the peaks of 〈ωr〉ψ,rms are relatively wide.
This implies that the streamwise vortical structure arises locally by a certain
mechanism related to the present control, while the radial vorticity appears to
be due to the random motion of the broken vortices downstream.

The phase-averaged azimuthal vorticity, 〈ωθ〉ψ, and the phase-averaged rms
fluctuations of the axial vorticity component, 〈ωz〉ψ,rms, are shown together in
figure 19. In the figure, local maxima of 〈ωz〉ψ,rms that come from the inner
shear layer are labelled as (A) and are numbered in order of their development
as (A1-17), and those of the outer shear layer are similarly labelled as (B1-16).
The peaks of (A7-11) exist between the inner vortex rings and are stretched due
to the induced velocity field. This mechanism is similar to that of ‘rib’ vortices
(see, e.g. [18–22]). On the other hand, the peaks of (B7-16) are found near the
outer vortex rings. Interpretation of these outer streamwise vorticity, i.e. (B7-
16), is twofold: there are coherent streamwise vortices crowded near the rings,
or distortion of the rings is counted as the streamwise vorticity fluctuation (or
both). An instantaneous close-up picture near this region, which is shown in
figure 20, indicates that the streamwise vorticity corresponding to (A) consists
of several streamwise vortices ((i) in the figure), while that to (B) seem to be
accompanied by the distortion of the outer vortex rings ((ii) in the figure).

5.2 Transport equation of fluctuation intensity of stream-
wise vorticity

The origin and the growth of the streamwise vortical structure are investigated
by the phase-averaged transport equation of streamwise vorticity fluctuation,
which reads
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∂

∂t

〈
1
2
ω′2z

〉
= CVrψ + CVzψ + TDψ + V Dψ +DSψ

+ PRmvg
r ψ + PRmvg

z ψ + PRmix
θ ψ + PRfvg

ψ. (10)

The terms appearing on the right-hand side of equation (10) and their physi-
cal meanings [23] are summarized in table 1. Note, 〈uθ〉ψ, 〈ωr〉ψ, 〈ωz〉ψ, and
∂ 〈•〉ψ /r∂θ are zero in the problem considered here.

Among these terms, we focus on the production due to the phase-averaged
velocity gradient in radial (PRmvg

r ψ) and axial (PRmvg
z ψ) directions, and the

azimuthal mixed production (PRmix
θ ψ). Generally speaking, the production by

the fluctuating velocity gradient, PRfvg
ψ, is one of the dominant terms in un-

controlled jets [23]. In the present controlled coaxial jet, however, its amplitude
is found much smaller than the above-mentioned three terms.

Figures 21-23 show the distributions of PRmvg
r ψ, PRmvg

z ψ, and PRmix
θ ψ for

the case of Sta = 1. There are some similarities and dissimilarities between the
production processes of the streamwise vorticity fluctuation near the central
axis and along the outer shear layer, which are labelled in figure 19 as (A) and
(B). Details are discussed in the following sections.

5.3 First stage: amplification by initial velocity gradient

For both (A) and (B), the seeds of axial vorticity, of which origin will be dis-
cussed later in section 5.5, are at first intensified by PRmvg

r ψ. In figure 21, local
maxima of PRmvg

r ψ are clearly seen on the ridges of 〈ωz〉ψ,rms ((A7-9) and (B4-
8) in the figure). This is due to the initial velocity gradient, ∂ 〈uz〉ψ /∂r. This
early stage of production takes place just upstream of the first roll-up vortices
induced by the control; the two-dimensional primary vortex rings stretch the
upstream seeds of the three-dimensional structure before the next primary vor-
tices roll up. Note that so-called braid region is not formed yet because the
next primary vortex has not appeared. With the formation of the next primary
vortices, the braid region appears. The streamwise structure is further stretched
in a similar manner as in an ordinary mixing layer.

5.4 Second stage: differentiation of inner and outer struc-
ture

The structures evolved near the nozzles, (A) and (B), start to develop differently.
For (A), the peak is mainly produced by PRmvg

z ψ, whereas PRmvg
r ψ is weakened

and its effect is restricted to the downstream tail of the peaks of (A10-17) in
figure 22. For (B), on the other hand, PRmvg

r ψ becomes even stronger than in
the first stage, and at the same time, negative production of PRmix

θ ψ appears
which is found in figure 23 ((B9-16) in the figure).

There are two major reasons why PRmvg
z ψ replaces PRmvg

r ψ for the pro-
duction process of (A) in the second stage. First, ∂ 〈uz〉ψ /∂r contained in
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PRmvg
r ψ approaches zero near the central axis due to the axisymmetricity. Sec-

ond, ∂ 〈uz〉ψ /∂z (which determines the sign of PRmvg
z ψ) switches its sign along

the central axis due to the intrusion by ‘arms’ of the inner roll-up vortices (see,
distributions of streamwise velocity along r/Do = 0 in figure 16).

However, for the following two reasons, this PRmvg
z ψ is regarded as a mech-

anism to sustain, not to generate, the streamwise vorticity fluctuation. First,
the region of PRmvg

z ψ > 0 is always crowned by a cap of negative production of
PRmvg

z ψ just upstream. The periodic intrusion by the inner vortex rings along
the central axis also makes negative velocity gradient which acts as negative
production. Second, PRmvg

z ψ needs a source of streamwise vorticity, which has
been grown in the first stage and then convected radially by the subsequent
inner vortex rings.

Unlike (A), ∂ 〈uz〉ψ /∂r of (B) does not decay downstream (see, figure 16).
At the same time, however, negative production by the azimuthal mixed pro-
duction, PRmix

θ ψ, rapidly grows as shown in figure 23. The negative value of
PRmix

θ ψ appears because the distorted primary vortex is clung by ‘rib’ vortices
that rotate in the opposite direction at the point where the primary vortex in-
clines itself in the azimuthal direction, and its axial vorticity is weakened by
their motion (see, e.g. figure 14(b) of [24]). A slightly weak positive peak of
PRmix

θ ψ appearing downstream of the negative one is caused simply by elon-
gation of the relevant rib vortices. When the rib vortices are elongated, they
occasionally occupy the regions of opposite sign of 〈ωθ〉ψ, and then the sign
of PRmix

θ ψ turns to be positive. It is worth noting that the negative value of
PRmix

θ ψ cannot be explained only by the distortion of vortex rings. With dis-
tortion of the vortex rings only, PRmix

θ ψ would have positive values regardless
of the sign of 〈ωθ〉ψ because the primary vortices are aligned with the direction
of the azimuthal gradient of the axial velocity.

The growth of the streamwise structure in the second stage is summarized
as follows. As the inner streamwise structure is convected away from the inner
shear layer, the leading mechanism of their development shifts to the axial
stretching near the central axis. The axial stretching acting especially on the
peak of the streamwise vorticity is caused by the periodically discharged inner
vortex rings. On the other hand, the outer streamwise structure is formed by
the rib vortices (as evidenced by the negative azimuthal mixed production).
Similarly to the first stage, they are further intensified by the velocity gradient
in the outer shear layer.

5.5 Before the first stage: generation of the streamwise
structure

Finally, we explore the generation mechanisms at the very beginning of the
development ((A1-6) and (B1-3) in figure 19), i.e. the step before the first stage
described in section 5.3. We focus on the inner shear layer, where the mixing of
scalar is mostly enhanced. Figure 24 shows the close-up pictures of the above-
mentioned three production terms near the nozzle exit. The control phase-angle
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is 1.6π and 0π (= 2π). The gap of the colour contour levels is finer than that
used in figures 21-23 to make it easy to identify the small amount of the initial
production.

According to the figure, the initiation of the streamwise vorticity is governed
by the balance of the radial stretching, PRmvg

r ψ, and the azimuthal mixed pro-
duction, PRmix

θ ψ. A claw-like structure is clearly observed in 0 < z/Do < 0.2 for
both PRmvg

r ψ and PRmix
θ ψ with opposite sign. In fact, PRmvg

r ψ and PRmix
θ ψ are

negatively correlated. By their definition, PRmvg
r ψ and PRmix

θ ψ are decomposed
as

PRmvg
r ψ = 〈ω′zω′r〉ψ

∂ 〈uz〉ψ
∂r

=
〈
ω′z

(
∂u′z
r∂θ

− ∂u′θ
∂z

)〉

ψ

∂ 〈uz〉ψ
∂r

, (11)

PRmix
θ ψ = 〈ωθ〉ψ

〈
ω′z
∂u′z
r∂θ

〉

ψ

=
(
∂ 〈ur〉ψ
∂z

− ∂ 〈uz〉ψ
∂r

)〈
ω′z
∂u′z
r∂θ

〉

ψ

. (12)

If the flow structure would not change in the streamwise direction (i.e. ∂u′θ/∂z
and ∂ 〈ur〉ψ /∂z are zero), then PRmvg

r ψ and PRmix
θ ψ would become identical

with opposite sign. Namely, the residual terms, i.e. ∂u′θ/∂z and ∂ 〈ur〉ψ /∂z,
break the equilibrium in the production mechanism at this stage. Table 2 shows
the time evolution of ∂ 〈ur〉ψ /∂z at the inlet inner shear layer (r/Do = 0.25,
z/Do = 0), which is a quantity controlled by the present nozzle. In the table,
the other term appearing in equation (12), ∂ 〈uz〉ψ /∂r, is also listed for compar-
ison. Due to the control input, ∂ 〈ur〉ψ /∂z drastically increases from negative to
positive before the claw-like structure appears at ψ = 1.6π. Although the abso-
lute value of ∂ 〈ur〉ψ /∂z is much smaller than ∂ 〈uz〉ψ /∂r, its relative strength
also rises up to 7% at ψ = 1.6π. This positive ∂ 〈ur〉ψ /∂z works to suppress
the negative production of PRmix

θ ψ, because ∂ 〈uz〉ψ /∂r is always positive at
the position of interest. Thus, the positive production of PRmvg

r ψ periodically
stands out due to the periodic suppresion of PRmix

θ ψ.

6 Conclusions

DNS of controlled confined coaxial jet flow has been carried out. The following
conclusions are derived on the control of near-field vortical structure and the
consequent scalar transport processes.

Control using the intelligent nozzle is modelled by periodic contraction of the
nozzle radius. The present control method generates various type of flow pat-
terns and concentration profiles depending on the amplitude and the frequency
of the contraction.

For the case of best mixing (Sta = 0.9 and ε = 0.0125), the mechanism
of mixing enhancement can be explained as schematically shown in figure 25.
First, a pair of counter-rotating two-dimensional vortex rings are synchronously
discharged with the control input. Next, the scalar ejected from the central
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nozzle is entrained by the inner vortex rings rolled up from the inner shear
layer. The inner vortex rings that contain plenty of scalar are then distorted
by the streamwise vortices near the centreline. Finally, the inner vortex rings
become three-dimensional and break down, and this process enhances the mixing
of scalar concentration.

The origin and the growth of the streamwise vortical structure are investi-
gated by the phase-averaged transport equation of streamwise vorticity fluctua-
tion. First, the present control makes seeds of streamwise vortices by attenuat-
ing the negative effect of azimuthal mixed production with positive ∂ 〈ur〉ψ /∂z.
Next, the seeds of the streamwise vortices are stretched by ∂ 〈uz〉ψ /∂r of the
coming roll-up vortices. Then, those vortices originated from the inner and outer
shear layers start to develop in different manners. Development of the structure
in the outer shear layer is essentially similar to that in ordinary mixing layers.
The structure generated in the inner shear layer is convected toward the central
axis and stretched axially by the periodically discharged inner vortex rings.
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Table 1: Mathematical expression and physical meaning of each term in the
transport equation of the streamwise velocity fluctuation intensity.
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Table 2: Phase-averaged velocity gradient related to azimuthal mixed produc-
tion right downstream of the inner nozzle edge.

ψ

– 0.0866

0π

– 0.701

0.4π

– 0.664

0.8π

0.41

1.2π
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1.6π
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10.9 13.37 15.75 13.21 9.832
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∂z

ψ
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∂r (%)
– 0.79 – 5.2 – 4.2 3.1 7.1
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Figure 5: Computational grid in the cross-stream plane.
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(a) (b) (c)

(d) (e)

Figure 9: Instantaneous vortical structure (white) and scalar concentration dis-
tributions (black): natural jet with velocity ratio of (a) β = 32; (b) 16; (c) 9.1;
(d) 6.4; (e) controlled jet at Sta = 1, ε = 0.0125.
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Figure 15: Phase-averaged azimuthal vorticity, 〈ωθ〉ψ, at ε = 0.0125, Sta = 0.9.
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Figure 17: Spatial relationship between phase-averaged scalar concentration,
〈c〉ψ, (solid line), and azimuthal vorticity (dotted line: red, 〈ωθ〉ψ > 0; black,
〈ωθ〉ψ = 0; blue, 〈ωθ〉ψ < 0) at ε = 0.0125, Sta = 0.9.
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Figure 18: Phase-averaged vorticity fluctuation at ε = 0.0125, Sta = 0.9, ψ =
1.6π. (a) 〈ωr,rms〉ψ, (b) 〈ωz,rms〉ψ.
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Figure 19: Phase-averaged axial vorticity fluctuation, 〈ωz〉ψ,rms, (solid line),
and azimuthal vorticity (dotted line: red, 〈ωθ〉ψ > 0; black, 〈ωθ〉ψ = 0; blue,
〈ωθ〉ψ < 0) at ε = 0.0125, Sta = 0.9.
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(i)

(ii)

Figure 20: Instantaneous vortical structure (white opaque) and scalar isosurface
(gray transparent).
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Figure 21: Spatial relationship between phase-averaged radial stretching,
PRmvg

r ψ (coloured line; purple line represents PRmvg
r ψ = 0), and streamwise

vorticity fluctuation, 〈ωz〉ψ,rms (dotted line) at ε = 0.0125, Sta = 1.
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Figure 22: Spatial relationship between phase-averaged axial stretching,
PRmvg

z ψ (coloured line; purple line represents PRmvg
z ψ = 0), and streamwise

vorticity fluctuation, 〈ωz〉ψ,rms (dotted line) at ε = 0.0125, Sta = 1.
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Figure 23: Spatial relationship between phase-averaged azimuthal mixed pro-
duction, PRmix

θ ψ (coloured line; purple line represents PRmix
θ ψ = 0), and stream-

wise vorticity fluctuation, 〈ωz〉ψ,rms (dotted line) at ε = 0.0125, Sta = 1.

39



z
/D
o

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.350.300.250.200.15

r/Do

-1.0

-0.5

0.0

0.5

1.0

ψ = 1.6π
0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.350.300.250.200.15

r/Do

-1.0

-0.5

0.0

0.5

1.0

ψ = 1.6π
0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.350.300.250.200.15

r/Do

-1.0

-0.5

0.0

0.5

1.0

ψ = 1.6π

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

z
/D
o

0.350.300.250.200.15

r/Do

-1.0

-0.5

0.0

0.5

1.0

ψ = 0π
0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.350.300.250.200.15

r/Do

-1.0

-0.5

0.0

0.5

1.0

ψ = 0π
0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00
0.350.300.250.200.15

r/Do

-1.0

-0.5

0.0

0.5

1.0

ψ = 0π

(a) (b) (c)

Figure 24: Closeup pictures of (a) PRmvg
r ψ, (b) PRmvg

z ψ, (c) PRmix
θ ψ at the

near-nozzle inner shear layer, together with 〈ωz〉ψ,rms, at ε = 0.0125, Sta = 1
(ψ = 1.6π and ψ = 0π (2π)). Coloured line with purple line as zero, each
production term; dotted line, 〈ωz〉ψ,rms.
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Figure 25: Schematic diagram of scalar transport processes due to near-field
large-scale vortical structure of (a) the inner and (b) the outer shear layers.
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