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ABSTRACT 
 
 A series of numerical simulation of the flow and heat 
transfer in modeled counter-flow heat exchangers with 
oblique wavy walls is made for optimal shape design of 
recuperators. The effects of oblique angles and amplitudes 
of the wavy walls are systematically evaluated, and the heat 
transfer and pressure loss characteristics are investigated. 
The flow field is drastically modified due to the counter-
rotating streamwise vortices induced by the wavy walls. 
With the oblique angle of 50-60 degree, significant heat 
transfer enhancement is achieved at the cost of relatively-
small pressure loss, and the j/f factor becomes significantly 
larger than that of straight square duct or conventional 
compact recuperators. When thermal coupling of hot and 
cold fluid passages is considered, the heat transfer is found 
to be strongly dependent on the arrangement of counter-flow 
passages. It is found that the j/f factor is increased with the 
Reynolds number in the range of the present study. Optimal 
shape design method with adjoint variables of the velocity 
and thermal fields is also employed in pursuit of maximizing 
the j/f factor.   
 
 
INTRODUCTION 
 
 Small-scale distributed energy systems with micro gas 
turbines have been paid growing attention because of their 
high efficiency and low environmental impact. Recently, 
Uechi et al. (2004) showed that one of the most important 
technical issues for the system efficiency is to enhance the 
effectiveness of recuperator.   
 Up to now, a number of compact heat exchanger 
designs have been proposed with various types of heat 
transfer enhancement technologies (e.g., Kays and London, 
1984). Among them, primary surface recuperators have been 
considered to meet the requirements for low cost and high 
effectiveness, and employed in recuperated turbine systems 
(McDonald, 2000). In heat-exchanger passages with 
modified heat transfer surfaces, considerable heat transfer 
augmentation is attainable. However, the optimal shape of 

the flow passage, which maximizes the heat transfer at the 
cost of minimal pressure loss, has not been obtained even in 
the case of laminar flow due to the complexity of heat and 
fluid flow phenomena.   
 Recent advances in computing technologies have 
enabled us to employ optimal shape design procedures with 
variational methods, which need large computational 
resources. Since the pioneering work by Pironneau (1973), 
these methods have been widely applied to many engineering 
problems (e.g., Mohammadi and Pironneau, 2001). Shape 
optimization techniques enable rigorously theoretical 
analyses, and are expected to give us useful information for 
designing higher-performance heat exchangers. 
 The final goal of the present study is to develop a shape 
optimization method of heat-exchanger passages, in which 
the effect of thermal coupling between neighboring fluids is 
crucial to the heat transfer performance. For this purpose, we 
first propose a recuperator design with oblique wavy walls, 
and investigate the detailed mechanism of heat transfer 
enhancement. Then, we extend the variational method with 
adjoint variables of the velocity field (Çabuk and Modi, 
1992) to simultaneous optimization of heat transfer and 
pressure loss.  
 
 
RECUPERATOR WITH OBLIQUE WAVY WALLS 
 
Recuperator Configuration 
 
 Figure 1 shows surface geometry of the passage (over 
one pitch) with oblique wavy walls, and computational grids 
with boundary fitted coordinate system. Surface shapes of 
the top and bottom walls are defined as follows: 
 
 ( )γπ  tan2cos , , zx −−== xbottomwtopw LAyy , (1) 
 
where A, Lx, and γ denote the height amplitude, streamwise 
pitch, and oblique angle of the wavy walls, respectively. 
Two types of heat-exchanger configurations with staggered 
arrangement of hot and cold fluids are assumed as shown in  
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Fig. 2. Each passage is surrounded by oblique wavy walls 
(top and bottom walls) and flat side walls (left and right 
walls). The thermal resistance of dividing walls is neglected. 
The oblique angles of adjacent passages in Case 1 are the 
same in the spanwise (z-) direction, while those in Case 2 are 
identical in magnitude, but opposite in sign.   
 In preliminary computations, we found that the most 
effective amplitude of the oblique wavy wall is 0.25δ, where 
δ represents the half height of the straight square duct of the 
equivalent volume with the same Lx. Thus, the amplitude is 
kept constant at 0.25δ throughout the present study. 
 
 
Numerical Method 
 
 The governing equations are the incompressible Navier-
Stokes, continuity, and energy equations. The present 
numerical scheme is based on the finite difference method 
with general coordinate system. A second-order finite 
difference scheme is used for the spatial discretization. The 
flow is advanced in time by employing a second-order 
Adams-Bashforth scheme and a second-order Crank-
Nicolson scheme for the nonlinear and the viscous terms, 
respectively. Continuity is assured with the SMAC method. 
Both of the counter-flowing fluids are air, and the bulk mean 
temperature is kept constant at each inlet. A periodic 
boundary condition is imposed in the streamwise (x-) 
direction. Isothermal heated walls are assumed when 
examining the heat transfer performance of an isolated 
passage. In order to evaluate the heat-exchanger 
performances, the thermal coupling between the neighboring 
passages is considered by assuming the temperature and heat 
flux to be continuous over the dividing walls.  
 In the present study, the hydraulic diameter Dh of the 
duct is defined by its volume V and the wall surface area 
Stotal as  
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in order to extract the effect of the geometrical change of the 
surfaces. Unless otherwise mentioned, the Reynolds number 
Reδ based on the bulk mean streamwise velocity Ub and δ is 
set constant at 100, while the Reynolds number Re based on 
the hydraulic diameter is 170~190 depending on the oblique 
angle. The Fanning friction factor f  is defined by 
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where the pressure loss p ∆  represents the mean pressure 
difference between the inlet and outlet of the duct. The wall 
shear stress, the heat transfer coefficient, and the Nusselt 
number averaged over the wall surface are respectively 
defined as follows: 
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Fig. 1  Surface geometry of the passage with oblique wavy 
walls and computational grids with boundary fitted 
coordinate system. 
 

 
Fig. 2  Configurations of modeled counter-flow recuperators: 
(a) Case 1, (b) Case 2. 
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where the log-mean temperature difference is defined by 
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The goodness factor of the present heat exchanger design is 
chosen as 
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Heat Transfer and Pressure Loss Characteristics 
 
 Effect of oblique angles.  Figure 3 shows the pressure 
loss and the friction drag normalized with those in straight 
square duct versus the oblique angle γ. As γ decreases, the 
flow separation bubble described later is enlarged, and the  
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Fig. 3  Pressure loss and friction drag versus oblique angle. 
 

        
Fig. 4  Averaged Nusselt number versus oblique angle. 
 

        
Fig. 5   j / f factors versus oblique angle. 
 
 
pressure loss increases monotonically to γ ~ 45º. The friction 
drag, on the other hand, takes its maximum value at γ ~ 60º. 
 Figure 4 shows the averaged Nusselt number versus γ.  
The Nusselt number is significantly larger than that in 
straight square duct, and takes its maximum value at γ ~ 45º.  
It is also found that the thermal boundary condition has a 
large effect on the heat transfer performance. The Nusselt 
numbers for Case 1 are 22% lower than those for the 
isothermal wall condition, while the results for Case 2 are up 
to 5% lower. This drastic change can be explained by the 
flow and thermal fields in the duct described later. 
  Figure 5 shows the j/f factor versus γ.  It can be seen 
that the j/f  factor becomes larger than that of the 
corresponding straight square duct by up to 25%. Although 
the Nusselt numbers are maximized at γ ~ 45º, the pressure 
loss due to flow separation is also very large. Thus, the j/f 
factor has its peak at γ ~ 60º, where the friction drag 
becomes maximum as shown in Fig. 3. Therefore, it is 
conjectured that the heat transfer associated with wall shear 
flow is more effective than that with separation-reattachment  

        
Fig. 6  Wall shear stress vectors on the bottom wall 
projected onto the x-z plane. 
 

                
Fig. 7 Velocity vectors in the y-z plane at x /δ = 3.0 and iso-
contours of the streamwise velocity.  The contour increment 
is 0.2Ub. 
 

          
Fig. 8  Isosurfaces of the second invariant of the deformation 
tensor (Q < −2.0) at γ = 60°: black, streamwise vorticity ω x 
< 0; gray, ω x > 0. 
 
 
flow in the present wavy ducts. 
 In the following section, we investigate the detailed 
mechanism of heat transfer enhancement in the present 
recuperator. 
 
 Mechanism of heat transfer enhancement.  Hereafter, 
the wave amplitude and oblique angle are respectively kept 
constant at A = 0.25δ and γ = 60º. Figures 6 and 7 show the 
wall shear stress vectors on the bottom wall, and the velocity 
vectors in the y-z plane at x/δ = 3.0 with iso-contours of the 
streamwise velocity. The oblique wavy wall induces a flow 
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Fig. 9  Distribution of the wall shear stresses 
 
 
along the valley (A) and a flow over the hill toward the left 
wall (B). The flow along the wavy wall changes its direction 
upward by the interaction with the right wall. In combination 
with the vigorous flow over the hill toward the valley region, 
it forms a pair of counter-rotating vortices, which induce a 
flow toward the left wall at the center of the duct. The 
magnitude of this secondary flow is extremely large, and 
reaches up to 25% of the bulk mean streamwise velocity.  
Thus, the high-speed region is shifted to the left wall. The 
size of the flow separation bubble (C) is dependent on the 
magnitude of the flow over the hill near the left wall (D), 
and increased with decreasing γ. 
 The streamwise vortices extracted with the second 
invariant of the deformation tensor are visualized in Fig. 8.  
It is observed that the vortical structure is formed 
alternatively on the top and bottom walls, because the wall 
deformation is out-of-phase with each other to the main flow 
direction.   
 Figure 9 shows the distribution of the wall shear stress 
on each wall. The wall shear stress becomes large along the 
hill on the top and bottom walls. The magnitude of the wall 
shear stress differs considerably between the left and right 

      

      

                      
 

Fig. 10  Velocity vectors and iso-contours of temperature 
under the thermal coupling condition in the y-z plane at   
x/δ = 3.0  for γ = 60°: (a) Case 1, (b) Case 2. 
 
 
walls, because the high-speed fluid is shifted to the left side 
of the duct. The distribution of the wall heat fluxes under 
isothermal heated condition is similar to that of the wall 
shear stresses, and hence the heat transfer on the left wall is 
much larger than that on the right wall. 
 Figure 10 shows the velocity vectors and iso-contours of 
temperature under the thermal coupling condition in the y-z 
plane. In Case 1, heat transfer is remarkably enhanced on the 
left wall of the central duct, since the side walls having 
higher heat transfer performances share the dividing wall.  
On the other hand, the walls having lower performances 
share the right wall, and the heat transfer is markedly 
deteriorated. In Case 2, each of the side walls shares the 
walls with higher and lower performances, so that the total 
heat transfer is the same on the left and right walls. It is also 
observed that the dissimilarity between the velocity and 
temperature fields near the walls is more significant in    
Case 2 than in Case 1. 
 Figure 11 shows heat flux distributions on the bottom 
wall under different thermal boundary conditions. It can be 
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Fig. 11  Distribution of the wall heat flux on the bottom wall 
under each thermal boundary condition: (a) Isothermal heated 
condition, (b) Coupling condition (Case 1), (c) Coupling 
condition (Case 2). 
 
 
seen that the wall shear stress and the heat flux on the 
isothermal wall exhibit a similar distribution. The heat flux 
near the right wall remains small, because the streamwise 
velocity is small near the wall. On the other hand, the heat 
flux distributions in Cases 1 and 2 change their profiles due 
to the thermal coupling effect on both sides of the dividing 
wall, and the heat flux near the right wall is markedly 
increased. In Case 2, moreover, the heat transfer is 
augmented in broader regions over the wavy wall, and this 
results in heat transfer enhancement larger than in Case 1. 
 
 Reynolds number dependence.  Figure 12 shows f Re, 
τ w , Nu, and j/f for different Reynolds numbers. 

Performances of conventional compact heat exchangers 
(Utriainen and Sundén, 2002) are also plotted for 
comparison. It is found that, in the present recuperator, the 
Nusselt number profile is similar to that of the heat 
exchanger with cross wavy surfaces, while the j/f factor of 
the present recuperator is much larger than that of 
conventional ones because of the smaller pressure loss 
penalty. It is seen that the increase of the j/f factor is 
gradually saturated with increasing the Reynolds numbers.  
 

 
 
Fig. 12  Effect of Reynolds numbers: (a) averaged Nusselt 
number, (b) j/f factor. 
 
 
OPTIMAL SHAPE DESIGN WITH ADJOINT-BASED 
METHODS 
 
Optimal Shape Design Procedure 
 
 Figure 13 shows the schematic diagram of the shape 
optimization. The present simulation is performed under the 
following assumptions: 
 
 1) The top and bottom walls are movable, while the left 

and right walls are kept always flat in shape and fixed 
in position. 

 2) The streamwise length Lx is fixed.  
 3) Bulk mean velocity is kept constant. 
 4) The volume of the duct is kept constant by adjusting 

the mean distance between the top and bottom walls 
Ly. 

 5) The isothermal heated condition is imposed for the 
thermal boundary condition at the wall. 

 
 The distribution of the shape modification ( )Γρ x is 
determined by almost the same procedure proposed by 
Çabuk and Modi (1992), while the energy equation is  
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Fig. 13  Schematic of the shape optimization. 
 
 
additionally incorporated into the optimization procedure for 
taking into account the heat transfer characteristics. The cost 
function J to be maximized is defined as follows: 
 

 ( ) 0
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where the first and second terms respectively represent the 
mean pressure loss between the inlet and outlet boundaries, 
and heat transfer integrated over the entire walls. Each term 
is normalized with the absolute quantity in straight square 
duct. In Eq. (9), β represents the weighting factor of heat 
transfer to pressure loss, and is set to unity in the present 
simulation. 
 Hereafter, the following formulations are written in the 
Cartesian coordinates for simplicity. The Navier-Stokes and 
energy equations in steady forms are 
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where the velocity and pressure are nondimensionalized by 
Ub, δ, and ν, and T corresponds to the temperature 
difference from the wall temperature Tw. 
 Let ( )Tup i ′′′  , , be respectively the variations of 
( )Tup i  , ,  in response to the shape modification of the 
passage from ΓM to ΓMε as shown in Fig. 13. Then, 
( )Tup i ′′′  , , satisfy the following set of perturbed equations: 
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 Since the velocity and thermal fields respectively satisfy 
the non-slip and isothermal wall condition on ΓM, the 
following relations can be derived by using Taylor series 
expansions: 
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 Now we introduce the adjoint variables ( )***  , , Tup i , 
which satisfy the following adjoint equations: 
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 Then, by using the divergence theorem, the first 
variation of the cost function, δ J, can be identified as 
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where the following boundary conditions are imposed on the 
perturbation and adjoint variables: 
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At the inlet and outlet boundaries, a periodic boundary 
condition is imposed on the adjoint variables, instead of the 
inflow and outflow conditions employed in the procedure of 
Çabuk and Modi (1992). 
 We employ a simple gradient method, and determine 

( )Γρ x  as 
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Therefore, δ J is always positive from Eq. (14), which ensures 
positive changes in J. 
 The optimization procedure is summarized as follows: 
 
 1) Set an initial surface geometry. 
 2) Generate a computational grid. 
 3) Solve the Navier-Stokes equation for ( )iup  , , and  

the energy equation for T. 
 4) Solve the adjoint equations for ( )**  , iup  and *T . 
 5) Modify the surface shape by using Eq. (17). 
 6) Smooth the surface modified in Step 5 to avoid 

numerical instability. 
 7) Iterate steps 2 - 6 until the cost function converges. 
 
For the ease of the grid generation, each grid point is 
assumed movable only in the y-direction, while fixed in the  
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Fig. 14  Shape modification: (a) Movement of the boundary 
grid points in the y-direction, (b) Relocation of the grid point. 
 

 
 

Fig. 15  History of the cost function and j/f factor. 
 
 
x- and z- directions. Boundary grid points on the top and 
bottom walls are generated in the following ways. As shown 
in Fig. 14 (a), each grid point kiP ,  is projected in the y-
direction onto the plane QPP kiki 1,,1 +− , where the point Q is 
calculated from ( )nερ=QP ki, . Next, in Step 6, each grid 
point is adjusted in the y-direction to avoid sharp irregularity. 
As shown in Fig. 14 (b), kiP ,

~
 obtained in Step 5 is moved to 

kiP ,
~′ , which is the midpoint of RP ki,

~ , if the corner angle α 
defined by kikiki PPP ,1,,1

~~~
+−∠  or 1,,1,

~~~
+−∠ kikiki PPP  is smaller than 

a prescribed threshold of π32 . Here, the point R is the foot 
of a perpendicular of kiP ,

~
 onto kiki PP ,1,1

~~
+−  or 1,1,

~~
+− kiki PP .  This 

process is repeated until the minimum angle becomes larger 
than the threshold value in both x- and z- directions. 
 In this study, ε is set constant such that the magnitude of 
the wall deformation is kept less than 0.05δ. 
 
 
Results of the Optimization 
 
 The initial recuperator shape is chosen as the passage 
with oblique wavy walls presented in the previous sections 
(A = 0.25δ, γ = 60º in Eq. (1)). The Reynolds number defined 
by Ub and δ is kept constant at 100 during the optimization. 
 Figure 15 shows the history of the cost function J and 
the corresponding change of the j/f factor. The cost function 
is increased monotonically with successive iterations and 
reaches its maximum at the 5th iteration. The j/f factor takes 
its maximum value at the 5th iteration as well, and about 3% 
improvement is achieved. Whereas the pressure loss f Re is 
almost the same as the initial case, the contribution of the 

  

     
 
Fig. 16  Modified structure at the 5th iteration: (a) 
Cumulative surface modification from the initial shape to the 
5th step on the bottom wall, (b) Wall shear stress vectors on 
the bottom wall. 
 
 
skin friction is increased. Therefore, it is conjectured that the 
increase in the averaged Nusselt number is due to the 
reduction of the separation bubble and thus the enhancement 
of heat transfer associated with the wall shear flow. It is 
noted that, after the 7th iteration, computation diverges due 
to the appearance of locally-steep surfaces unresolvable with 
the present grid system. 
  Figure 16 shows cumulative surface modification from 
the initial state to the 5th step, and the wall shear stress 
vectors on the bottom wall at the 5th iteration. It can be seen 
that there is large negative deformation on both sides of the 
hill region. Thus, the shape of the hill becomes steeper than 
the initial shape, and the valley region becomes leveled. 
With this modification, the flow over the hill near the left 
wall (D) is kept attached to the wall and the flow separation 
region of the valley (C) in the initial case is diminished. 
Therefore, it is anticipated that, in the neighborhood of the 
present initial shape with oblique wavy walls, the maximum 
j/f factor would be achieved by enhancing the wall shear 
flow and suppressing the flow separation simultaneously. 
 
 
 CONCLUSIONS 
 
 A series of numerical simulation of the flow and heat 
transfer in modeled counter-flow heat exchangers with 
oblique wavy walls is made for optimal shape design of 
recuperators. The effects of oblique angles and amplitudes 
of the wavy walls are systematically evaluated, and the heat  
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transfer and pressure loss characteristics are investigated. 
The optimal shape design method based on variational 
analysis is also employed for maximizing the j/f factor. The 
following conclusions are derived: 
 
1. The flow structures are drastically modified due to the 

counter-rotating streamwise vortices induced by the 
wavy walls. The j/f factor takes its maximum value when 
the heat transfer is significantly enhanced by strong 
secondary flows, while the flow separation is suppressed 
at the minimum level. The present recuperator exhibits 
extremely large j/f factor if compared with conventional 
ones. 

2.  Since the flow field becomes highly asymmetric in the 
spanwise direction, heat transfer characteristics are 
strongly dependent on the heat-exchanger configurations 
of counter-flowing hot and cold fluid passages. Heat-
exchanger performance is maximized when the side 
walls having larger and smaller heat transfer coefficients 
share the same dividing wall.   

3. The optimal shape design procedure is established using 
a cost function, which implements the simultaneous 
representation of the heat transfer and pressure loss 
characteristics. Results from the present simulations 
show that the j/f factor can be further increased by the 
present shape optimization method. 
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NOMENCLATURE 
 
A  wave amplitude 
Dh  hydraulic diameter of the flow passage 
f   Fanning friction factor 
J  cost function in shape optimization 
j  Colburn heat transfer modulus 
h  averaged heat transfer coefficient 
Lx  length of the periodic duct in the streamwise 

direction 
Ly  mean distance between the top and bottom walls 
Nu  averaged Nusselt number 
Pe  Péclet number 
Pr  Prandtl number (= 0.71) 
p   pressure 
Q  second invariant of the deformation tensor 
Re  Reynolds number (=Ub Dh /ν) 
Reδ  Reynolds number (=Ub δ /ν) 
S  heat transfer surface 
T  temperature 
Tb  bulk mean temperature 

Ub  bulk mean streamwise velocity 
u, v, w velocity components in x, y, z- directions  
x, y, z Cartesian coordinates 
yw  wall deformation in y- direction 
V  volume of the passage  
 
Greeks 
δ  half of the side length of the baseline square duct 
ε  small perturbation 
λ  thermal conductivity 
Γ  boundary of the duct 
γ  oblique angle of the wave 
ν  kinematic viscosity 
ρ  fluid density 
ρ  arbitrary function of the shape modification 
τ  shear stress 
Ω  whole domain enclosed by Γ 
ω x  streamwise vorticity 
 
Subscripts and superscripts 
C  cold air 
H  hot gas 
I, in  inlet 
M  surface to be modified 
m   spatial mean 
O, out outlet 
w   wall 
0  straight square duct 

′   perturbation variables 
*   adjoint variables 
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