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Abstract

Effects of wall curvature on the turbulent structure in curved channel flow are stud-
ied by means of direct numerical simulation (DNS). Four different radii of curvature,
δ/Rc = 0.013, 0.05, 0.1 and 0.2, are examined. The DNS results show reduction of
turbulence intensities on the convex side and enhancement of radial turbulence inten-
sity in the center region of channel with the increase of curvature. Analyses on the flux
Richardson number and the Reynolds shear stress clarify that such turbulence modula-
tion is attributed to the extra production of the Reynolds stress caused by the centrifugal
force. In addition, a spatio-temporal LSE (Linear Stochastic estimation) is applied to
the computed velocity field in order to extract the development of turbulence-producing
eddies affected by centrifugal force. The development of turbulence-producing motion
on the convex side is associated with a large-scale strong roll-cell working against the
centrifugal stabilizing effect. The spatio-temporal LSE also reveals that on the convex
side strong outward and inward motions are induced by the roll-cell before the second-
and fourth-quadrant motions are developed.

1 Introduction
Flow over a curved surface frequently appears in various industrial applications such as aerofoils, tur-
bine cascades and pipelines. Clarification of phenomena in curved flows involving inherent unstable
and stable mechanisms is therefore of great importance.

The mean velocity profile in wall turbulence subject to a streamline curvature has been exper-
imentally studied by many researchers. Wattendorf [1] observes a region with a constant angular
momentum, i.e., rUθ = const. (where Uθ is the streamwise mean velocity and r denotes the radial
position) in a turbulent curved channel flow with a strong curvature, i.e, δ/Rc = 0.1 (where δ is the
channel half width and Rc is the radius of curvature). On the other hand, Hunt and Joubert [2] do not
observe such a region with constant angular momentum in the case of weak curvature (δ/Rc = 0.01).
The mean velocity profile in the vicinity of a curved wall is similar to that of a plane wall [3, 4].
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Table 1: Computational conditions. (The mesh size is in the local wall unit evaluated after the simu-
lation.)

Case δ/Rc Reτ (r∆θ)+ ∆r+ ∆z+

convex - concave convex - center convex - concave
Case 1 0.013 150 15.60 - 19.53 0.16 - 6.07 6.27 - 7.84
Case 2 0.05 150 14.57 - 20.62 0.15 - 6.41 5.85 - 8.28
Case 3 0.1 150 13.98 - 20.83 0.15 - 6.48 5.61 - 8.37
Case 4 0.2 150 13.37 - 19.77 0.14 - 6.15 5.37 - 7.94

Away from the wall, the mean velocity is higher on the convex side and lower on the concave side,
respectively, as compared to that on a plane wall [1,5–7].

Turbulent stresses are also modified by the streamwise curvature. So and Mellor [6] show that
the turbulent motion substantially disappears in a half of boundary layer near the convex wall with
strong curvature (δ/Rc = 0.05 ∼ 0.1). Gillis and Johnston [7] demonstrate that all the turbulent shear
stress components collapse into a single curve when normalized by the friction velocity. So and
Mellor [6] also observe an enhancement of the turbulent motion on a concave boundary layer with a
strong curvature. The turbulence intensity near the concave wall is almost twice as large as that on
a corresponding plane wall. The vanishing point of the turbulent shear stress is located at y/δ = 1.1.
In the region near the wall, the turbulent shear stress normalized by the turbulent energy is nearly the
same as that of the plane channel flow. Similar enhancement and suppression of turbulence intensity
are observed in fully-developed turbulent curved channel flows [2, 5]. In channel flows, the point
where the turbulent shear stress becomes zero shifts toward the convex side.

Despite those interesting and practically important observations, the underlying mechanisms have
not fully been understood. As is the case with the plane turbulent channel flow, deeper understand-
ing on the physics can be obtained by direct numerical simulation (DNS). To the best of authors’
knowledge, there is only one published work on DNS of turbulent flow in a channel with streamwise
curvature, i.e., the paper by Moser and Moin [8]. Their conclusions on the turbulence statistics are
that most of the quantities, except for the Reynolds shear stress, are similar to those in a plane channel
flow when scaled with the proper local variables. Their DNS, however, is limited to a case of weak
curvature (δ/Rc = 0.013). Therefore, systematic knowledge with respect to the change of curvature is
lacking. Dynamical production-dissipation mechanisms, which cause the modification of turbulence
structure, are also still unclear.

In the present study, DNS of fully developed turbulent curved channel flow is performed for
different radii of curvature in order to obtain the systematic knowledge on the effects of curvature
to a turbulent channel flow. A special focus is laid upon the production and dissipation mechanisms
near the convex and concave walls. For that purpose, we extract some fundamental dynamics of
the turbulence-producing eddies between stable (i.e., convex) and unstable (i.e., concave) regions by
using a spatio-temporal linear stochastic estimation.

2 DNS of turbulent curved channel flow
The governing equation for the fluid is the incompressible Navier-Stokes equation with the contravari-
ant velocities on a generalized coordinate system. A second order central difference scheme is used
for the spatial discretization on a staggered grid system. All the terms are advanced in time with the
Crank-Nicolson method and the coupling between continuity and momentum equations is treated by
using the fractional step method, similarly to Choi et al. [9]. No-slip boundary condition is imposed
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Figure 1: Computational domain.

on the walls. The flow is driven by a constant mean pressure gradient. Namely, the friction Reynolds
number, Reτ = uτδ/ν, is set constant. From the balance between the mean pressure gradient and wall
shear stress, the global friction velocity uτ, can be defined, using the friction velocity on the convex
wall uτi and that on the concave wall uτo, as

uτ =

√

R2
i u2

τi + R2
ou2

τo

2R2
c

, (1)

where Ri, Ro and Rc are the radii of curvature at the convex wall, the concave wall and the channel
centerline, respectively.

The temperature is treated as a passive scalar and iso-heat flux condition is imposed at the walls,
similarly to Kasagi et al. [10]. The mean heat flux, qw, is defined as

qw =
qwiRi + qwoRo

2Rc
, (2)

where qwi and qwo are the heat fluxes on the convex and concave walls, respectively.
The computational domain is shown in figure 1, where δ is the channel half-width and Rc is the

radius of curvature at the channel centerline. Four different radii of curvature are tested, as listed in
table 1. The computational domain is 2.5πδ×2δ×πδ and is covered by 64×128×64 grid points; in
the streamwise, wall-normal and spanwise directions, respectively. The grid spacing in the streamwise
and spanwise directions are Rc∆θ+ = 18.3 and ∆z+ = 7.35 in wall units. Non-uniform meshes are
used in the radial direction. The first mesh point away from the wall is ∆r+(= ∆y+) = 0.19, and the
maximum spacing (at the centerline of the channel) is about 5 wall units. Although the local Reynolds
number on the concave side increases as the curvature becomes larger, the grid spacing is kept nearly
the same, as shown in table 1.

Figure 2 shows instantaneous isosurfaces of the streamwise vorticity in an r − θ cross-section
computed for different radii of curvature. Even with the weakest curvature examined (figure 2(a)),
vortices on the convex side are attenuated due to the centrifugal stabilizing effect. As the curvature
increases, the attenuation becomes more pronounced. In the case of strong curvatures (figure 2(c)-
(d)), the vortical structure, that has been developed and stretched in the streamwise direction on the
concave side, extends over the center region of channel. In contrast, the vortices are scarcely detected
on the convex side.
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Figure 2: Isosurfaces of instantaneous streamwise vorticity (ωxδ/uτ = 30). (a) δ/Rc = 0.013; (b)
δ/Rc = 0.05; (c) δ/Rc = 0.1; (d) δ/Rc = 0.2. [link to AVI file “fig2d.avi”]
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Figure 3: Skin friction coefficient (C f ) and Nusselt number (Nu)for different radii of curvature (δ/Rc).
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Figure 5: Turbulence intensity distributions. (a) streamwise component; (b) radial component; (c)
spanwise component.
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Figure 6: Rms velocity in local wall coordinates. (a) streamwise component; (b) radial component;
(c) spanwise component.
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3 Turbulence statistics

3.1 Mean statistics
First of all, the skin friction coefficient, i.e., C f = 2τw/(ρ < uθ >2), and the Nusselt number, i.e.,
Nu = 2hd/λ (where h = qw/(Tw− [T ])), are presented in figure 3 as a function of the curvature. Here,
< · > denotes the integral mean value in the channel and [·] denotes the mean value in a region from
each wall to a point where the maximum value is located. The quantities used for normalization,
i.e., C f 0 and Nu0, are those of a channel flow at the same friction Reynolds number. As the curvature
increases, the friction coefficient increases on the concave side due to the centrifugal instability effect,
whereas it decreases on the convex side. The Nusselt number shows a similar trend, but the rate of
change is generally larger than that of the friction coefficient.

The mean velocity profile is shown in figure 4. It is non-dimensionalized with the maximum mean
velocity in order to compare with the available experimental data. In accordance with the experimental
observations [1,5], there is a region in the center of the channel where the angular momentum becomes
constant when the curvature is strong, and such region is unclear when the curvature is weak. The
experimental data corresponds well to the present DNS calculations in the channel center region,
however, the discrepancy is seen in the convex side. This appearance is originated from the difference
of Reynolds number. The experiments are conducted in at least ten times lager Reynolds number (Reb
is the order of 104) than the present DNS (Reb is the order of 103). The low Reynolds number flow
subjected to stronger curvature effect results in lower velocity and wall shear stress on the convex
side. In other words, the flow at low Reynolds number feels the curvature effect more strongly.

3.2 Reynolds normal stresses and budgets
Figure 5 shows the root-mean-square (rms) velocity fluctuations. In the case of δ/Rc = 0.013, the
profiles are in fair agreement with those presented by Moser and Moin [8]. Small quantitative differ-
ences is likely due to the difference in the Reynolds numbers, i.e., Reτ = 168 in [8] and Reτ = 150 in
the present study. The relative magnitude of curvature that the flow feels may be larger with a lower
Reynolds number, as mentioned above. As the curvature increases, the streamwise rms velocity is
reduced on the convex side due to the centrifugal stabilizing effect. At the same time, the radial and
spanwise rms velocities increase in the center region. The radial rms velocity eventually exceeds the
streamwise component when the curvature is larger than 0.05. The rms velocities are also presented
as functions of distance in wall units (figure 6). The peak location of the streamwise and spanwise
rms velocities on the concave side shift towards the wall as the increase of the curvature, whereas
those on the convex side a shift towards the center. The magnitude of all the components are signif-
icantly modified as the curvature becomes strong. This observation suggests a strong dependency of
the turbulence intensity near the wall on the curvature, in contrast to the conclusions drawn by Moser
and Moin [8].

In order to explain the increase of the radial and spanwise rms velocities in the center region, the
effect of curvature on the production of Reynolds normal stresses is investigated. Here, we calculate
the flux Richardson number, R f , which was originally proposed by Bradshaw [11] to represent the
buoyancy effect in the stratified flow . In the present study, R f is defined by the ratio of the production
by the centrifugal force to the shear production. The streamwise and radial production terms can be
written as

Pθθ = −2
[

uθurr
∂(Uθ/r)

∂r
+ 2uθur

Uθ
r

]

(3)

and
Prr = 4uθur

Uθ
r

, (4)
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Figure 7: Flux Richardson number distributions.
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Figure 8: Budget of streamwise Reynolds normal stress, uθuθ. (a) convex side; (b) concave side.
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respectively. Here, the first term in the right-hand-side of (3) represents the shear production (hereafter
referred to as SP). The second term of (3) and the right-hand-side of (4) are the centrifugal production
(CP). Therefore, the flux Richardson number can be defined as

R f =
2Uθ/r

r[∂(Uθ/r)/∂r]
. (5)

Note that the second term of (3) has the same absolute value as (4) with an opposite sign. These
terms represent the redistribution between the streamwise and radial Reynolds stress components due
to the centrifugal effect. The flux Richardson number can therefore be interpreted also as the ratio
of redistribution to shear production. Note also that CP is identical to the summation of streamwise
production and convection referred to as in [8]. As shown in figure 7, R f is positive on the convex
side and negative on the concave side. Namely, the redistribution occurs from the radial to streamwise
components on the convex side and from the streamwise to radial components on the concave side.
In the center region, R f is less than −1 when the curvature is larger than 0.05. In those cases with
strong curvature, the energy transfer from the streamwise to radial components (i.e., CP) exceeds SP,
so that the radial rms velocity becomes larger than the streamwise rms velocity in the center region,
as observed in figure 5(b).

The budget of streamwise Reynolds stress uθuθ in the case of δ/Rc = 0.05 is shown in figure 8.
The changes from a plane channel are qualitatively similar to those in the case of weak curvature [8].
The amount of changes, however, is one order larger. SP and turbulent diffusion (TD) are enhanced
on the concave side due to the centrifugal instabilizing effect, whereas those on the convex side are
suppressed. Although CP is small near the wall, it has a comparable magnitude as SP in the center
of channel. Figure 9 presents the budget of radial (i.e., wall-normal) Reynolds stress urur. In a plane
channel flow, the main source for the gain is the velocity-pressure gradient (i.e., the pressure strain
(PS) plus the pressure diffusion (PD)) and that for the loss is the dissipation (D) (Mansour et al. [12]).
In the present case, CP has a comparable magnitude as PS, PD and D in the entire region and is
negative near the convex wall and positive near the concave wall. Especially, CP is a main contributor
to the radial Reynolds stress budget on the concave side and the value of CP exceeds that of PS.
This also explains the prominence of radial rms velocity in the center region. Accompanied with the
additional mechanism of production (i.e., CP), TD is also enhanced in the entire region. The budget of
spanwise Reynolds stress is depicted in figure 10. Similarly to the plane and weakly curved channels,
PS acts as the main contributor to the gain, although it is weakened on the convex side and enhanced
on the concave side. In the region away from the convex wall (y/δ ∼ 0.8), the main contributor is
replaced to TD. The increase of redistribution from the radial component on the concave side and the
enhanced TD raise the spanwise turbulence intensity in the center region. Furthermore, the increase
of PS and TD with increasing the curvature results in the enhancement of the spanwise turbulence
intensity(not shown here). This tendency originates in the increased redistribution from the radial
component.

3.3 Contribution to Reynolds shear stress
Detailed information on the contribution of various combinations of positive and negative uθ and ur
to the turbulent stress production can be obtained by the quadrant analysis of the Reynolds shear
stress (Wallace et al. [13]). Figure 11 shows the contribution of each quadrant on the convex side in
the case of δ/Rc = 0.05. Here, y+ denotes the local wall coordinate on the convex side. The fourth
quadrant (Q4) is the main contributor to the Reynolds shear stress in the entire region of the convex
side. This implies that the turbulent motion on the stable side is maintained by the inflow of high-
speed fluids. Figure 12 presents the quadrant analysis on the concave side. Similarly to the case of
plane channel [14], Q4 give the largest contribution to the Reynolds shear stress only in the region
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Figure 9: Budget of wall-normal Reynolds normal stress, urur. (a) convex side; (b) concave side.
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Figure 11: Quadrant analysis on convex side (δ/Rc = 0.05).

near the wall, whereas the second quadrant (Q2) acts as the main contributor in the other region, i.e.,
y+ > 12. On the convex side, the contribution of Q2 and Q4 is comparable to that of the first (Q1)
and third (Q3) quadrants. On the concave side, Q2 and Q4 give much larger contribution than Q1 and
Q3.

Figure 13 shows the joint probability density function (JPDF), f (uθ,ur), on the convex and con-
cave walls. Here, the velocity fluctuations are normalized by their standard deviations. The correlation
is weak on the convex side, whereas a strong negative correlation appears on the concave side due
to the high possibility of occurrence of Q2 and Q4 motions. The contribution to the Reynolds shear
stress (figure 14) explains the situation more clearly. The contribution, uθur f (uθ,ur), is related with
JPDF by

uθur =
���

uθur f (uθ,ur)duθdur . (6)

On the convex side, there is nearly equally large contribution from the Q2 and Q3. On the concave
side, the contribution from Q2 and Q4 is dominant. This analysis confirms that there is an inherent
mechanism which enhances the turbulence production on the concave wall.

4 Spatio-temporal linear stochastic estimation

4.1 Estimation procedure
The Linear Stochastic Estimation (LSE) (Adrian [15]) is a statistical estimation procedure to extract
the representative flow structure for a given velocity condition around a sample point. The features
of this method are: a) high convergency of the estimated field; b) statistical definiteness; c) flexibility
to assign various conditional velocities. LSE has been applied to the plane boundary layer, turbulent
pipe flow, round jet, isotropic turbulence and turbulent channel flow [15–17] and similar structures
have been obtained to those by the other conventional conditional averaging methodology. Moreover,
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LSE has been used to generate a seed for an investigation on the development process of fundamental
vortical structure in a shear flow [18], or to reconstruct the velocity field from the pressure informa-
tion [19] in combination with the proper orthogonal decomposition [20]. These studies demonstrate
that the structure extracted by LSE well represents the essential feature of the vortical structure in
turbulence, although it may also be viewed as a statistical artifact.

In this study, LSE is extended to a spatio-temporal version in order to extract the temporal devel-
oping/decaying process of the turbulence producing eddies formed between the stable (convex) and
unstable (concave) sides. With this spatio-temporal LSE, the estimated velocity field, ûi, is repre-
sented by the velocity condition, uc j, through the linear combination, which reads

ûi(x′,τ; x, t) = Ai juc j(x, t) . (7)

The vector x denotes the point where the velocity condition is imposed, x′ is the location relative
to x, the scalar t is the time when the velocity condition is given and τ is the elapsed time from
t. A location of y+ = 15 is adopted as the velocity condition point x and the velocities which give
the maximum contribution to Q2 and Q4 events are used as the velocity conditions, similarly to
the spatial LSE of a plane channel flow by Moin et al. [17]. The curvature, δ/Rc, is set to 0.05 in
which the radial turbulent intensity becomes larger than the streamwise component (figure 5). On
the convex side, the velocities that give the maximum contribution to the Reynolds shear stress are
(uθ,ur) = (−1.89,7.99× 10−2) for Q2 and (uθ,ur) = (2.45,−0.176) for Q4. On the concave side,
those are (uθ,ur) = (−5.64,0.6) for Q2 and (uθ,ur) = (3.24,−0.2) for Q4. The estimation coefficient,
Ai j in (7), is determined to minimize the least square difference between the velocity obtained by the
conditional averaging and that estimated by (7). According to this procedure, the coefficient Ai j is
obtained from the spatio-temporal two-point correlation of the velocity components. Hereafter, we
refer to the velocity condition mentioned above as Q2 (or Q4) condition and the motion induced by
that velocity condition as Q2 (or Q4) motion, and so on.
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Figure 13: Joint probability density function at y+ = 13 (δ/Rc = 0.05). (a) convex side; (b) concave
side.
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Figure 14: Contribution to the Reynolds shear stress at y+ = 13 (δ/Rc = 0.05). (a) convex side; (b)
concave side.
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(a)

(b)

δ

(c)

Figure 15: Time development of the fourth quadrant vortices and high speed region on the convex
side (δ/Rc = 0.05). (a) τ+ = −10.5; (b) τ+ = 0; (c) τ+ = 10.5. White, II+ = 0.22×10−3; color, ûθ
from -2.4 to 2.4 (y+ = 10). [link to AVI file “fig15.avi”]
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Figure 16: Time development of the fourth quadrant vortices and high speed region on the concave
side (δ/Rc = 0.05). (a) τ+ = −10.5; (b) τ+ = 0; (c) τ+ = 10.5. White, II+ = 0.44×10−3; color, ûθ
from -3.22 to 3.22 (y+ = 10). [link to AVI file “fig16.avi”]
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4.2 Estimated spatio-temporal structure
The extracted temporal evolution of the Q4 vortices and high speed region on the convex side is
illustrated in figure 15. Here, the vortices are identified by the second invariant of velocity deformation
tensor, II = ui, ju j,i. A hairpin-like vortex is formed at τ+ =−10.5 (figure 15(a)) and maintained until
τ+ = 0 (figure 15(b)). This vortical structure is similar to that observed in a plane channel [17].
Afterwards, the structure becomes a pair of streamwise vortices as a consequence of the attenuation
of the hairpin-head. Then it is convected further downstream with decay. On the concave side (figure
16), a pair of streamwise vortices is formed from the beginning and developed until τ+ = 0 (figure
16(a)-(b)). The vortices become thinner as they are convected downstream (figure 16(c)). A high
speed streak appears under the region between the streamwise vortices.

Figure 17 shows the estimated velocity vectors and the Reynolds shear stress in the y′− z′ cross-
section (y′, wall-normal direction; z′, spanwise coordinate relative to the velocity condition point) on
the convex side at x′ = 0 and τ = 0. The upper edge of figure 17 corresponds to the channel center
plane and the bottom edge to the convex wall. With Q2 condition (figure 17(a)), a strong Reynolds
stress is observed around the point where the velocity condition is given. Q2 motion, i.e., the motion
directed away from the wall, can be seen at the same point. In the channel center region, a pair of
large roll-cells is additionally observed. It appears that the strong upward motion is induced by the
large organized vortices and this large-scale motion is essential for the turbulence on the convex side
to be maintained against the centrifugal stabilizing effect. A similar feature is found with the Q4
condition, as shown in figure 17(b). Namely, a large-scale roll-cell in the channel center region is
observed to make a strong downwash near the wall. In contrast to the convex side, large roll-cells are
not observed on the concave side (either Q2 or Q4 condition), as shown in figure 18. Strong vortex
motion such as roll-cell is not essential for the development of the Q2 and Q4 motions on the concave
side. There is an inherent self-sustaining mechanism which enhances the turbulent motion.

In what follows, we investigate on the time variation of the estimated velocity along z′ = 0 axis on
the convex and concave walls. The estimated velocity is observed on a reference frame moving with
the convective velocity that is determined through the spatio-temporal two-point correlation. Figure
19 shows the profiles of estimated streamwise velocity, ûθ, on the convex side at different times. Both
with Q2 and Q4 conditions, the estimated streamwise velocity attains its maximum value at the time
when the velocity condition is given (τ+ = 0) . Similar results are obtained on the concave side (figure
20). The profiles of estimated streamwise velocity at τ+ = −10.5 and τ+ = −21 are similar to those
at τ+ = +10.5 and τ+ = +21, respectively. Namely, the estimated streamwise velocity evolution is
nearly symmetric around τ+ = 0.

Figure 21(a) shows the time dependency of the radial velocity distributions on the convex side
estimated with Q2 condition. The radial velocity at the earliest time (τ+ = −21) attains its maximum
value in the center region (y/δ ∼ 1.0) and monotonically decreases as the time elapses. It implies that
Q2 motion at τ+ = 0 is induced due to the strong outflow in the center region driven by the roll-cell
at a prior time (i.e., τ+ < 0). Accordingly, the radial velocity in the near-wall region (y/δ ∼ 0.2) has
a high value at the prior time (τ+ < 0), followed by the decay at τ+ > 0 owing to the centrifugal
stabilizing effect. A similar tendency is observed for Q4 motion (figure 21(b)).

The time dependency of the estimated radial velocity on the concave side is shown in figure 22.
In Q2 motion (figure 22(a)), the peak value of the radial velocity is not observed in the center region
in contrast to that on the convex side. It is conjectured that the development of Q2 motion is more
autonomic than that on the convex side. The radial velocity attains its peak value at τ+ = 0. By
comparison between the curves at τ+ = −21 and τ+ = 21, we notice that the decaying process is
milder than the development process. This is attributed to the constraint of the Q2 decaying motion
affected by the centrifugal force, which should enhance the Q2 motion. Again, the trend is similar
with the Q4 condition (figure 22(b)).
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Figure 17: Estimated velocity vector ûr, ûz and Reynolds stress ûθûr (color) on the convex side. (a)
2nd quadrant; (b) 4th quadrant; τ+ = 0, x+ = 0.
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Figure 18: Estimated velocity vector ûr, ûz and Reynolds stress ûθûr (color) on the concave side. (a)
2nd quadrant; (b) 4th quadrant; τ+ = 0, x+ = 0.
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Figure 19: Estimated streamwise velocity on the reference frame moving with convective velocity.
Convex side (x′ = 0 at τ = 0, z′ = 0). (a) 2nd quadrant; (b) 4th quadrant.
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Figure 20: Estimated streamwise velocity on the reference frame moving with convective velocity.
Concave side (x′ = 0 at τ = 0, z′ = 0). (a) 2nd quadrant; (b) 4th quadrant.
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Figure 21: Estimated radial velocity on the reference frame with convective velocity. Convex side
(x′ = 0 at τ = 0, z′ = 0). (a) 2nd quadrant; (b) 4th quadrant.
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Figure 22: Estimated radial velocity on the reference frame with convective velocity. Concave side
(x′ = 0 at τ = 0, z′ = 0). (a) 2nd quadrant; (b) 4th quadrant.
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Figure 23: Time dependency of estimated Reynolds shear stress ûθûr on the reference frame with
convective velocity (x′+ = 0 at τ+ = 0, y+ = 15, z′+ = 0).

Finally, the estimated Reynolds shear stress at (y+, z+) = (15,0) on the convecting reference frame
is shown in figure 23 as a function of time. The Reynolds shear stress is normalized by that of the
conditional velocities, i.e., ucθucr. Significant temporal asymmetry appears on the convex side. Since
the estimated streamwise velocity has temporal symmetry, as shown in figure 19, this asymmetry is
mainly due to that of the radial velocity (figure 21). On the other hand, developing and decaying
processes on the concave side looks nearly symmetric.

Based on the information above, the dynamics of the turbulence-producing eddies, extracted by
the spatio-temporal LSE, can be summarized as follows (see, figure 24).

• On the convex side:

1. Q4 (or Q2) motion is induced by a large-scale roll-cell (τ+ < 0);

2. Turbulence producing motion is developed around the velocity condition point (τ+ = 0);

3. The motion rapidly decays due to the centrifugal stabilizing effect (τ+ > 0).

• On the concave side: The centrifugal force works to enhance Q2 and Q4 motions. The devel-
opment and decay of these motions are autonomic, similarly to plane channel flows.

5 Conclusions
DNS of turbulent curved channel flow is performed to clarify the momentum transport mechanism
of turbulent wall shear flow subjected to streamline curvature. According to the turbulence statistics
calculated, the following conclusions can be drawn.

1. The radial turbulent intensity is enhanced as the curvature increases. The Richardson number
distribution reveals that this trend is due to the extra production by the centrifugal effect.
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Figure 24: Schematics of the dynamics obtained by the spatio-temporal LSE. (a) Convex side; (b)
concave side.
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2. On the concave side, there is an inherent mechanism which enhances the turbulent motion. This
is clearly illustrated by the distribution of the quadrant contribution to the Reynolds stress.

3. On the convex side, the turbulent motion is suppressed due to the centrifugal stabilizing effect.
Although this is qualitatively similar to that is the case of weak curvature [8], the amount of
suppression increases as the increase of curvature.

In addition, the spatio-temporal development process of the second- and fourth-quadrant motions
is extracted by means of the spatio-temporal linear stochastic estimation, and the following character-
istics are found.

1. A large strong roll-cell in the center region of channel works against the centrifugal stabilizing
effect on the convex side. The development of turbulent production motion is likely maintained
by this roll-cell. On the other hand, roll-cell structure is not observed on the concave side. The
turbulence production seems to be self-sustainable.

2. On the convex side, strong outflow and downwash induced by the roll-cell in the center region
are confirmed prior to the occurrence of second- and fourth-quadrant motions. On the concave
side, a temporal symmetry appears owing to the self sustainable mechanism.

The turbulence statistics computed by the present DNS are available in tabulated forms at the
website (http://www.thtlab.t.u-tokyo.ac.jp/).
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