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ABSTRACT 

A series of direct numerical simulation is carried out to study the effects of system rotation on 

a fully developed turbulent channel flow. The rotating axis is in an arbitrary direction to the channel 

walls. Three cases are considered by combining two of the orthogonal rotating vectors, i.e., 

streamwise, wall-normal and spanwise rotations. The spanwise rotation effect is still dominant even 

when another orthogonal rotation is imposed to the system. However, the streamwise rotation 

induces the recovery of turbulence on the suction side, the enhancement of the secondary flow 

rotating in the positive streamwise direction, and the redirection of the near-wall vortical structures 

if this rotation is much stronger than the spanwise rotation. The wall-normal rotation reduces the 

slope of the linear region of the streamwise mean velocity distribution and increases the streamwise 

friction coefficient. In the case of combined streamwise and wall-normal rotation, turbulence is also 

enhanced on one side and depressed on the other side, while rotation-induced large-scale vortices 

also appear, extending in the absolute mean flow direction, even though no explicit spanwise 

rotation is imposed to the system. 
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I. INTRODUCTION 

Rotating turbulent flows are of great importance in many engineering applications such as those 

in gas turbine blade passages, pumps and rotating heat exchangers to name a few. In these flows, the 

rotation induces additional body forces, i.e., centrifugal and Coriolis forces, acting on the turbulent 

structures, so that the momentum transfer mechanism becomes more complex.  

The simplest flow mode in this category is a fully developed turbulent flow in a rotating 

channel, where the rotating axis is parallel to one of the three directions: the streamwise, 

wall-normal and spanwise directions. An arbitrary rotation vector can be decomposed into 

componential rotation vectors in these three directions. Among them, the spanwise rotating channel 

flow has been studied extensively through experiment1, 2 and numerical simulation3-15. As the 

rotation rate is increased, turbulence is gradually enhanced on the pressure side and reduced on the 

suction side, bringing asymmetric distributions of the mean flow and the Reynolds stresses1-15. At 

the same time, the large-scale roll cells come forth as a result of Taylor-Görtler instability 1, 3, 13 and 

shift towards the pressure side wall slowly, while the pair number of such cells tends to increase13. 

If the rotation rate is further increased, turbulence on the pressure side is reduced after some critical 

rotation rate, and the roll cells become much smaller and eventually disappear due to thickening of 

the relaminarized region on the suction side14, 15. The flow organization is enhanced by rotation 

within the region of zero absolute vorticity, and the inclination of the coherent hairpin vortices to 

the wall is less pronounced as the rotation rate is increased15. The flow exhibits moderate 

dependence on the Reynolds number, and the relaminarized region on the suction side slightly 

increases at higher Reynolds numbers15. At low Reynolds numbers, turbulence is affected by the 

Coriolis force and the low Reynolds number simultaneously, and the controlling parameters for the 

flow are the ratios among the viscous, Coriolis and outer length scales2. A Coriolis region where the 

Coriolis force effect predominates exists in addition to the conventional viscous and buffer regions2.  

Compared with spanwise rotation (SP), the influence of streamwise rotation (ST) on turbulent 
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channel flow is much weaker. However, this rotation induces a mean velocity in the spanwise 

direction and makes all six components of the Reynolds stress tensor nonzero14, 16. The streamwise 

mean velocity distribution is still kept symmetric with respect to the channel center, although the 

profile in the central region becomes more flattened with increasing rotation14, 16. The spanwise 

mean velocity is skew-symmetric with respect to the channel center and its absolute value is larger 

at higher rotation rates14, 16. The instantaneous velocity field visualized by Elsamni14 clearly showed 

that the large streamwise vortices rotating in the same direction, whose diameter is slightly smaller 

than the half channel width, are amplified, whilst those rotating oppositely are suppressed. The 

quasi-streamwise near-wall vortical structures rotating in the same direction are also enhanced by 

ST, whereas the opposite ones are reduced, and consequently the average spacing between the low- 

and high-speed streaky structures becomes much larger than in a non-rotating channel14.  

Turbulent channel flows are so sensitive to the wall-normal rotation (WN) that even a slight 

WN imposed can induce a very strong spanwise mean velocity14. As a result, the absolute mean 

flow deviates from the initial streamwise direction, redirecting the mean shear as well as the 

turbulent structures. 

So far, rotating turbulent channel flows were considered mainly in three orthogonal modes. In 

real applications, however, arbitrary-directional system rotation appears. Although such rotation can 

be regarded as a combination of several simultaneous orthogonal rotations, its effects cannot be 

directly determined from the latter due to the nonlinear nature of turbulence. In the present study, 

three cases are considered by combining two of the three orthogonal rotations, that is, combined 

ST/WN, WN/SP and SP/ST, which can be regarded as an extension of the previous studies to more 

general cases.  

This paper is organized as follows: in Sec. II the governing equations and the numerical method 

employed in the present direct numerical simulation (DNS) are briefly described. Section III is to 

discuss the computational results in three combined rotating cases, including the statistics, 
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secondary flows and turbulent structures. In the final section, we draw conclusions based on the 

results and discussions.  

 

II. NUMERICAL FORMULATION 

A. Flow configuration and governing equations 

The computational domain and the coordinate system in the present study are shown 

schematically in Fig. 1(a). Although the absolute mean flow may not stay in the x-direction in some 

cases, the terms of “streamwise” and “spanwise” are still used hereafter to denote the x- and 

z-directions, respectively, in accordance with former definitions. The turbulent flow between two 

parallel infinite walls is driven by a streamwise pressure gradient dP dx− , which is adjusted in the 

computation process to keep the streamwise bulk mean velocity  constant. The corresponding 

bulk Reynolds number 

bU

Re 2 /b bU δ ν=  is equal to 4560. The governing equations for a rotating 

incompressible flow in a reference frame rotating with the system can be written as follows: 

2

2
0

1
Re

i i i
j ijk

i j j

u u uP u R
t x x xτ

ε∂ ∂ ∂∂
= − + − −

∂ ∂ ∂ ∂ j ko u ,                                       (1) 

0i

i

u
x

∂
=

∂
,                                                                            (2) 

where 02j jRo uτδ= Ω  is the componential rotation number in the jx -direction and ijkε  is the 

alternating unit tensor. All the variables are nondimensionalized by the channel half width δ  and 

the friction velocity 0uτ  in a non-rotating channel. The last term on the right hand side of Eq. (1) 

represents the Coriolis force. The centrifugal force term is absorbed in the effective pressure1, 13 

2 21 8s cP P Ro r= − , where sP  is the normalized static pressure,  is the absolute 

rotation number, and  is the dimensionless distance from the rotating axis. The Coriolis force 

components in each of the three combined rotations are shown in Figs. 1(b)-1(d). No-slip boundary 

1/ 2( j jRo Ro Ro= )

cr
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condition is used on the walls and periodic boundary conditions are employed in the x- and 

z-directions. 

 

B. Numerical scheme and validation 

In order to solve the governing equations, a pseudo-spectral method is employed with Fourier 

series expansions in the streamwise and spanwise directions and Chebyshev polynomials in the 

wall-normal direction for spatial discretization17. The computation is carried out with  

grids in the streamwise, wall-normal and spanwise directions, respectively. For time integration, the 

Crank-Nicolson and Adams-Bashforth schemes are employed for the viscous and nonlinear terms, 

respectively. After the flow reaches a fully developed state, in which all the forces balance with 

each other in the streamwise and spanwise directions, time integration is extended over a time scale 

of 

128 97 128× ×

012 uτδ  for sampling the statistics. This procedure is repeated for every rotation number in 

three different cases.  

 In order to validate the present numerical method, we compare the friction velocities in a 

spanwise rotating channel with the experimental results of Johnston et al.1, the large eddy 

simulation (LES) data of Miyake and Kajishima4, 5 and the DNS data of Kristoffersen and 

Andersson12 and Lamballais et al.15 The Reynolds number is also kept at  as in the 

combined rotating cases, while the rotation number 

Re 4560b =

2b z bRo Uδ= Ω  is gradually increased from 0 

to 1.1, corresponding to 02z zRo uτδ= Ω  from 0 to 15.  

The friction velocities on the two walls normalized by that in the absence of rotation 0uτ  are 

shown in Fig. 2. The friction velocity on the suction side exhibits a monotonic decrease when the 

rotation rate is increased, while on the pressure side this term first increases and then decreases after 

some critical rotation number. The present result is in good quantitative agreement with previous 

numerical simulations, although the Reynolds number is slightly smaller. The experimental result 
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on the suction side, however, reveals a much stronger relaminarization tendency at lower rotation 

numbers than the numerical simulations. This inconsistency is attributed6, 11, 13, 15 to the 

comparatively small aspect ratio of the experimental setup and also to the fact that the flow was not 

fully developed in the experiment. The total friction has obvious reduction compared to the 

non-rotating case when the rotation becomes very strong, which was also observed in the previous 

work14, 15. These comparisons demonstrate that the present numerical method is accurate to capture 

the system rotation effects on turbulent channel flow.  

In rotating channel flows it is necessary to use a larger computational box to capture the 

large-scale structures. In order to check whether or not the present computational box is large 

enough to obtain accurate results, we increased the computational domain sizes in the streamwise 

and spanwise directions to 8πδ  and 4πδ , respectively, in the case of  and 15xRo = 0.04yRo =  

with a similar spatial resolution to that in the smaller computational box. The difference of mean 

velocities [Fig. 2(b)], whose definition will be given in Sec. III.B, and of other statistics (not shown 

here) in the larger and smaller computational boxes is fairly small, which demonstrates that with the 

present computational box accurate results can be obtained.  

 

III. RESULTS AND DISCUSSION 

A. Combined SP/ST 

In this case, the absolute rotation vector is in a plane parallel to the x- and z-directions, and both 

the spanwise and streamwise rotation components are nonzero as shown in Fig. 1(b). We consider 

two cases separately: in Case I, the magnitude of rotation vector is kept constant ( ) while 

increasing the angle 

7.5Ro =

β  between the x-direction and the rotating axis from 0 to , and in Case II, 

the spanwise rotation number is kept constant (

90°

2.5zRo = ) with the streamwise rotation number 

xRo  increased from 2.5 to 15.  
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Figure 3(a) depicts the friction coefficient 22f wC bUτ ρ= , which is normalized by the 

corresponding value in a non-rotating channel as a function of β , in Case I. It first increases with 

β , reaches a maximum at a certain angle and then decreases for larger β  on the pressure side, 

while decreases almost monotonically on the suction side. These tendencies are quite similar to 

those in a pure spanwise rotating channel, revealing the dominant effect of SP. An exception can be 

found at 45β = °  on the suction side that fC  recovers somewhat.  

The profile of the streamwise mean velocity in Fig. 3(b) becomes more asymmetric and the 

slope of linear region increases with β  because of the increasing effect of SP. The spanwise mean 

velocity induced by ST [Fig. 3(c)] is gradually depressed with increasing β , but also recovers to 

some extent at 45β = °  on the suction side. The turbulent intensities shown in Figs. 3(d)-3(f) are 

generally enhanced on the pressure side whereas reduced on the suction side with several 

exceptions. One exception is the reduction of  on the pressure side for rmsu 30β > ° , which is due 

to the expansion of the irrotational region toward the pressure wall13. In this region, the relation of 

zdU dy Ro≈  holds so that the total production, i.e., 11 11P R+  in Table I, becomes almost zero. 

Another exception is the recovery of all the Reynolds stresses at 45β = °  on the suction side, in 

accordance with that of fC  and W .  

In order to explain the above non-monotonic turbulence modulation on the suction side, we 

trace temporally the Reynolds stresses spatially averaged in the streamwise and spanwise directions 

at  when 30y+ = β  is suddenly increased from  to 45  as shown in Fig. 4. Note that all 

the Reynolds stress components are positive on the suction side. At first, the increase of  with 

30° °

zRo

β  decreases the rotational productions ,  and 12R 22R 23R  [Table I] directly, causing the 

reduction of uv , vv  and vw  as seen in Figs. 4(b) and 4(c). The reduction of uv  lessens the 

energy transfer from the mean flow to uu , resulting in the subsequent decrease of this component 
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in Fig. 4(a). For another Reynolds stress term uw , its rotational production tends to increase while 

its mean shear production tends to decrease, so that uw  changes only slightly. Although the mean 

shear and rotational productions exist for another Reynolds stress term ww , its energy is mainly 

transferred from uu  by the pressure-strain correlation. This term does not follow the reduction of 

uu  immediately, but stays around the initial value and even increase somewhat as depicted in Fig. 

4(a), which reflects the influence of rotation on the pressure field.  

The difference between the changes of ww  and vv  gradually increases the rotational 

production 23R , by which vw  is recovered from 25t+ =  in Fig. 4(c). The recovered vw  

enhances another mean shear production  and accordingly 13P uw  increases from 80t+ =  as 

shown in Fig. 4(a). The recovery of uv  is concerned with two processes. First, the much quicker 

and larger decrease of uu  than vv  enhances the term ( )zRo vv uu−  in , by which 12R uv  is 

recovered from . Second, the increase of 30t+ = uw  further enhances the term xRo uw  in , 

causing the continuous recovery of 

12R

uv , which is the main difference from a pure spanwise rotating 

channel. Following uv , other two Reynolds stress terms uu  and vv  in Figs. 4(a) and 4(b) 

recover from  and 200, respectively, since they can get more energy from the mean flow 

and from 

90t+ =

uu . This process proceeds until a new balance develops. The recovery of turbulence at 

45β = °  on the suction side is also detected at other two absolute rotation numbers, 5 and 11, as 

shown in Fig. 3(a).  

Although the existence of ST brings some exceptions around 45β = °  in Case I, SP still 

dominates the turbulence mechanism in the whole channel. In case II, the effect of ST is examined 

with a comparatively weak SP. In Fig. 5(a), the normalized friction coefficient on the pressure side 

keeps almost constant, whereas it gradually increases on the suction side and has a trend similar to 

 8



H. Wu & N. Kasagi, Phys. Fluids 16, 979-990 (2004) 
  

that in a pure streamwise rotating channel. The gradient of  and the Reynolds stress term U uv  

have obvious enhancement on the suction side with nearly constant values on the pressure side as 

shown in Figs. 5(b) and 5(d). Meanwhile, the absolute value of the spanwise mean velocity is 

enhanced in the whole channel, but much more remarkably on the suction side in Fig. 5(c). These 

results suggest that, in the range of the rotation number considered presently, SP still dominates on 

the pressure side, while ST enhances turbulence mainly on the suction side. This difference appears 

because of the following facts.  

ST changes the energy transfer from the mean flow to turbulence and the energy redistribution 

among the turbulent stress components mainly through two terms of vw  and uw , appearing in the 

rotational productions  and  in Table I. On the pressure side, SP strongly enhances the 

absolute values of the Reynolds stress component 

22R 12R

uv  and the anisotropic term 2v u− 2 , so that the 

terms 2 zRo uv−  and 2 2(zRo v u− ) dominate in  and , respectively. Other terms related to 22R 12R

vw  and uw  in  and  are only minor compared with the dominant terms. On the suction 

side, however, SP greatly reduces the absolute values of 

22R 12R

uv  and 2v u2− , while ST enhances vw  

and uw  gradually. At high xRo , the terms 2 xRo vw  and xRo uw  are much larger than other 

terms related to uv  and 2v u− 2

4)

 in  and , and therefore the effect of ST becomes 

dominant on the suction side.  

22R 12R

 

B. Combined ST/WN 

 As mentioned previously, the flow is very sensitive to WN, so that in this case we keep a weak 

WN condition  with gradually increasing the streamwise rotation number to 15 (Case 

III). Elsamni

( 0.0yRo =

14 argued that a wall-normal rotating channel flow could be regarded as a plane channel 

flow with a tilting angle to the spanwise direction, since the local flow angle  1tan ( / )l W Uα −=

 9



H. Wu & N. Kasagi, Phys. Fluids 16, 979-990 (2004) 
  

was nearly constant across the whole channel and the structure parameter 
2 2 1/ 2 2( )a uv vw k= +  

exhibited the characteristics of a two-dimensional boundary layer. We can redefine a unique flow 

angle , and employ a new coordinate system with - and -axes as shown in 

Figs. 6(a) and 6(b). The mean velocities in the - and -directions are obtained as 

1tan ( / )b bW Uα −= 'x 'z

'x 'z

cos sinU U Wα α= + ,                                                       (3)  

sin cosW U Wα α= − + .                                                      (4) 

If ST is imposed to the system, this rotation vector can be decomposed into a positive ' -directionx  

rotation and a negative -direction rotation as shown in Fig. 6(c), which resembles the case of 

combined SP/ST. The Coriolis force term of 

'z

xRo W  pointing to the upper wall [Fig. 1(c)] is 

strongly reinforced by WN, and according to its direction we define the upper and lower walls as 

the pressure and suction sides, respectively.  

Figure 7(a) shows the local flow angle . We can see that  is nearly uniform 

in the case of a pure wall-normal rotating channel except in the near wall region, where the angle is 

slightly smaller due to the influence of the wall. Although the two mean velocities on the walls are 

zero, the local flow angle 

1tan ( / )la W−= U la

lα  still has certain values, which represent the limits of 

, where  means the distance from the walls. If ST is imposed,  becomes 

non-uniform as 

1

0
lim tan [ ( ) / ( )]
r

W r U r−

→
r la

xRo  increases, revealing that ST tends to increase the three dimensionality of the 

flow. The normalized friction coefficient in the ' -direction, x 212Re ( / ) /f bwC dU dyτ
−= U , in Case 

III and that in a pure spanwise rotating channel by Kristoffersen and Andersson13 are shown in Fig. 

7(b). The bottom horizontal axis is labeled as sinxRo α  for the present case, while the top one is 

labeled as  for the spanwise rotating channel. This figure clarifies that the combined ST/WN 

enhances the friction coefficient on the pressure side, while reduces it on the suction side, like the 

effect of SP.  

zRo
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The -directional mean velocity is shown in Fig. 7(c), illustrating the existence of linear 

regions and the increase of the slope with 

'x

xRo . The linear region of mean velocity in a spanwise 

rotating channel corresponds to the neutral instability1, 13, 18, 19, whose slope is equal to . Here, 

we can expect that the slope of 

zRo

U  in the linear region be equal to sinxRo α− , which is the 

rotation number in the -direction. The computed and estimated slopes are listed in Table II. At 

lower 

'z

xRo , the computed slope is quite close to sinxRo α− , but the difference becomes much 

larger at higher xRo . This increasing deviation is mainly due to the enhancement of turbulence on 

the suction side by the -direction rotation, just like we discussed in the case of combined SP/ST. 

Such enhancement can be observed from the recovery of 

'x

fC  on the suction side at 

sin 3.5xRo α ≥ . 

The -directional mean velocity in a pure wall-normal rotating channel ('z 0xRo = ) is 

symmetric with respect to the channel center and its maximum absolute value is 0.16, which is 

about 1% of the mean velocity in the -direction at the same position, as seen in Fig. 7(d). This 

fact strongly supports the former argument of treating the wall-normal rotating channel flow as a 

two-dimensional flow tilting in the ' -direction

'x

x 14. As xRo  increases, this term exhibits larger 

absolute values in the whole channel and its profile begins to possess some characteristics similar to 

those in Fig. 3(c) (note that the definitions of the pressure and suction sides in these two figures are 

opposite).  

 

C. Combined WN/SP 

 Like the decomposition in the preceding subsection, SP imposed to a flow, which tilts to the 

spanwise direction due to WN, can be decomposed into two positive componential rotations in the 

- and -directions as shown in Fig. 6(d). Here, we analyze this problem from another aspect. 

The wall-normal rotation number in this case is kept at 0.04, while increasing the spanwise rotation 

'x 'z
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number to 15 (Case IV).  

The streamwise friction coefficients in Case IV and in a pure spanwise rotating channel 

normalized by the corresponding value in non-rotating channel are plotted in Fig. 8(a). The ratio of 

0/f fC C  in Case IV follows a change similar to that in the pure spanwise rotating channel, but its 

value is increasingly larger than the latter at higher . The profile of  is asymmetric with 

respect to the channel center due to the existence of SP, and therefore the Coriolis force 

zRo U

yRo U  

acting on the spanwise direction [Fig. 1(d)] is also asymmetric. This force induces a strong 

spanwise mean velocity with an asymmetric distribution as shown in Fig. 8(b). Meanwhile, another 

Coriolis force yRo W  acting on the negative streamwise direction in Fig. 1(d) is also strengthened. 

This term tends to decrease the streamwise mean velocity, so that the streamwise pressure gradient 

should be increased to balance this additional body force to keep  constant.  bU

Consider the Navier-Stokes equation for the streamwise mean velocity in Case IV: 

2

2
0

10
Re y

dP d U duv Ro W
dx dy dyτ

= − + − − .                                            (5) 

Integrating this equation from the lower to upper walls yields 

 
0 1 1

1 ( )
2Re y b

y y

dP dU dU Ro W
dx dy dyτ = =−

− = − − + ,                                      (6) 

where 
1

1
1 2bW

−
= ∫ Wdy  is the spanwise bulk mean velocity denoted by a straight line in Fig. 8(b). 

Equation (6) indicates that the streamwise mean pressure gradient should be increased to oppose the 

term of y bRo W  if  is kept constant. In the region where  is larger than , however, the 

increase of the pressure gradient cannot balance with the local Coriolis force 

bU W bW

yRo W , causing the 

decrease of the streamwise mean velocity in the region such as the neighborhood of the maximum 

 in Fig. 8(b). On the contrary, the streamwise mean velocity can be enhanced in other near-wall U
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regions where . These two effects decrease the slope of the linear region in U  and 

enhance the friction coefficient on the two walls. As  increases, the more asymmetric profile 

of  gives rise to the more asymmetric profile of , causing the larger inbalance between  

and . As a result, the friction coefficient becomes much larger than the corresponding value 

without WN as shown in Fig. 8(a).  

bW W<

zRo

U W W

bW

  

D. Secondary flow 

 In rotating channel flows, a distinct feature is the existence of secondary flow. Johnston et al.1, 

Kim3 and Kristoffersen and Andersson13 detected the longitudinal large-scale roll cells in their 

experiment or numerical simulation of spanwise rotating channels. They attributed these roll cells to 

Taylor-Görtler instability. Kristoffersen and Andersson13 further reported that the match of spanwise 

computation domain size with the scale of the vortices at certain rotation number would boost the 

formation of stable roll cells and the mismatch would prevent. In a streamwise rotating channel, 

Elsamni14 found that the longitudinal vortices rotating in the same direction as the system rotation 

were dominant and the diameter of these vortices was slightly smaller than the half channel width. 

 We first consider the secondary flow in Case II. Figure 9(a) shows the streamline of the roll 

cells, averaged in the streamwise direction and over a time period of 04 / uτδ  for  in a 

pure spanwise rotating channel. Coinciding with those by Kristoffersen and Andersson

2.5zRo =

13, two pairs 

of counter-rotating roll cells, located closer to the pressure side, distribute more or less periodically 

in the spanwise direction. According to the rotation direction of these large vortices, we divide the 

y-z plane into two kinds of regions: PR and NR regions, which mean positive and negative rotating 

cells, respectively. Figure 9(b) depicts instantaneous velocity vectors in three different y-z planes at 

 and . The distribution and pattern of roll cells are strongly influenced by ST. 

However, in the PR regions, positive rotating cells closer to the pressure side still exist across these 

15xRo = 2.5zRo =

 13
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three different planes. On the contrary, the negative rotating cells in NR regions are strongly blurred. 

Furthermore, on the suction side we can easily find some new vortices, whose diameter is smaller 

than that of the roll cells coming from SP, but much larger than that of the coherent near-wall 

vortical structures. Although a few negative rotating vortices exist, most of the vortices rotate in the 

positive direction. Such kind of vortices is more obvious on the suction side than on the pressure 

side. 

 In a combined ST/WN channel, the secondary flow becomes more complex. Figure 10 shows 

instantaneous velocity vectors in three different y-z planes at 15xRo =  and . Although 

strongly disturbed, one pair of counter rotating large vortices labeled by A and B can be clearly 

detected in these planes. A is a positive rotating vortex, while B is a negative rotating one. Similar 

to the effect of combined SP/ST, B seems more influenced by the ' -direction rotation. Compared 

with A, the width of B is much smaller and its strength is much weaker. All these vortices quickly 

move to the positive spanwise direction in the downstream. The movement of A and B in the 

spanwise direction are about 0.85

0.04yRo =

x

δ  across two planes 0.8x δ=  and 2.4x δ= , so that the 

extension angle of these vortices from the streamwise direction is about , which is the same as 

the flow angle . This equality reveals that these large vortices elongate in the 

absolute mean velocity direction. The strong upward and downward flows approximately border the 

vortex A, whose width is more than one third of the spanwise computation domain, while its height 

is about 

28°

1tan ( / )b bW Uα −=

1.6δ , much smaller than its width. This is because the y-z planes are not perpendicular to 

the -direction.  'x

 

E. Near-wall turbulent structures 

 The near-wall turbulent structures are strongly modified by system rotation. The enhanced and 

reduced streaky structures at  in a pure spanwise rotating channel are shown in Figs. 2.5zRo =

 14
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11(a) and 11(b). The domain size in these figures is one fourth of the whole computation domain in 

an x-z plane, that is, half both in the streamwise and spanwise directions. It is interesting to see that 

the streaky structures on the suction side centralize in the regions where the roll cells transport 

momentum from the pressure side to this side as shown in Fig. 9(a). If ST is imposed, the streaky 

structures on the suction side are remarkably enhanced and begin to point to the positive spanwise 

direction. Contrasting to this enhancement, the streaky structures on the pressure side are not 

enhanced obviously, but also tilt to the direction of the spanwise mean flow in Fig. 5(c).  

Consider the governing equation of the streamwise vorticity in a non-rotating plane channel 

 2

0

1
Re

x
x y z

D u u u
Dt x y z τ

x
ω ω ω ω∂ ∂ ∂

= + + + ∇
∂ ∂ ∂

ω .                                      (7) 

The first term on the right hand side of Eq. (7) is the stretching term and the following two terms 

are tilting terms. Sendstad and Moin20 reported that once a vortex was formed, the stretching term 

further intensified the development of this vortex. The vortex transfers high velocity to the regions 

below it and low velocity to the above. Since the vortex is inclined to the wall, the gradient u x∂ ∂  

inside the vortex is mainly positive as shown Fig. 12(a). As a result, the stretching term x u xω ∂ ∂  

has the same sign as the vortices, promoting the further development of both positive and negative 

rotating vortices.  

If SP and ST are imposed to the system, Eq. (7) has new rotation-based terms as follows: 

2

0

1
Re

x
x y z z x

D u u u u uRo Ro
Dt x y z z x τ

x
ω ω ω ω∂ ∂ ∂ ∂ ∂

= + + + + + ∇
∂ ∂ ∂ ∂ ∂

ω .                       (8) 

On the pressure side the vortices generate a very strong shear term u z∂ ∂ , which has the same sign 

as the vortices [Fig. 12(b)]; hence, the spanwise rotation term zRo u z∂ ∂  effectively reinforces the 

positive and negative rotating vortices, and consequently the streaky structures on this side are 

intensified [compare Figs. 11(a) and 13(a)]. On the suction side, however, the positive and negative 

rotating vortices are both reduced by SP term since u z∂ ∂  has opposite sign to the vortices.  
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The streamwise rotation term xRo u x∂ ∂  tends to intensify the positive rotating vortices on 

both sides, while weakens the negative rotating ones, since u x∂ ∂  is mostly positive inside the 

vortices. If ST is strong enough, the streamwise rotation term preferably promotes the positive 

rotating vortices, whose tails produce very strong low velocities backwards and whose heads give 

intensive high velocities forwards. This process rearranges the distribution of the streamwise 

velocity fluctuations around a negative rotating vortex in front of or behind a positive rotating 

vortex. Figures 12(c) and 12(d) clearly show the different distributions of the streamwise velocity 

fluctuations around positive and negative rotating vortices. Consequently, the sign of u x∂ ∂  

around negative rotating vortices is changed to negative and the dominant stretching term x u xω ∂ ∂  

subsequently becomes a compressing term, preventing the development of these vortices.  

Figure 12(e) shows the probability density function of xω  with the condition that the second 

invariant of the deformation tensor 
2 , ,i j j iQ u u+ + +=  is less than 0.02− , indicating the vortex cores. 

From this figure, we can conclude that the positive rotating vortices prevail over the negative ones 

in numbers and also in strength when ST is much stronger than SP. Along the positive rotating 

vortices, another shear term w x∂ ∂  is negative on the pressure wall as shown Fig. 12(a), so that 

the dominant term x w xω ∂ ∂  and the streamwise rotation term xRo w x∂ ∂  appearing in the 

transport equation of zω  are negative. These terms induce weak negative zω  for positive rotating 

vortices, so that these vortices drift somewhat to the negative spanwise direction. This explains why 

the streaky structures on the pressure side have a small tilting angle to the negative spanwise 

direction. On the upper suction side the tilting angle is positive since w x∂ ∂  is mainly positive 

along the positive rotating vortices there.  

Figure 13(a) shows the near-wall streaky structures in a non-rotating plane channel, in which the 

classical spacing, about 100 in wall units, between streaks is reproduced. If ST and WN are imposed 
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to the system, the intensity and density of the streaky structures on the pressure side are strongly 

enhanced [Fig. 13(b)], whereas obviously reduced on the suction side [Fig. 13(c)]. At the same time, 

the direction of these streaky structures is changed approximately to the -direction on both sides. 

Unlike the case of combined ST/SP, the redirection of the streaky structures in this case is mainly 

due to the change of the mean shear direction by WN.   

'x

 

IV. CONCLUSIONS 

 Three cases are considered in the present study by combining two of the three orthogonal 

rotating vectors. When SP and ST exist simultaneously and their rotation rates are comparable, the 

effect of SP dominates in the whole channel, and ST only brings some minor influence on the 

suction side. If ST is much stronger than SP, it can effectively enhance turbulence mainly along the 

suction side, although SP is still dominant on the pressure side. The large-scale roll cells, especially 

the negative rotating vortices, arising from the Taylor-Görtler instability are strongly affected by ST, 

and at the same time some new vortices smaller than the roll cells appear on the suction side.  

  When WN is imposed to the system, a strong spanwise mean velocity is generated and then 

the absolute mean flow inclines to the spanwise direction. If ST or SP is further imposed to the 

system, it can be decomposed into componential rotations in the direction of the absolute mean flow 

and in the direction perpendicular to the absolute mean flow. Therefore, both of the cases, combined 

ST/WN and combined WN/SP, have some similarity to combined ST/SP, if a new coordinate system, 

defined by the absolute mean flow direction, is employed. This analogy explains why the combined 

ST/WN also stabilizes/destabilizes the turbulent flow on the two walls and why the large-scale roll 

cells elongated in the absolute mean flow direction arise, although no explicit SP is imposed to the 

system. In addition, the enhanced/reduced streaky structures on the two walls support this argument. 

The case of combined WN/SP can also be analyzed from the change of the force balance in the 

streamwise direction. The inbalance between the pressure gradient and the local Coriolis force 
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reduces the streamwise mean velocity in the region where the maximum streamwise mean velocity 

appears, while enhances it in the near wall regions.  

 Furthermore, the present study provides useful database for the development and assessment of 

turbulent models employed in the rotating turbulent channel flows. Readers can refer to it at the 

URL of www.thtlab.t.u-tokyo.ac.jp. The effect of Reynolds number on rotating channel flows as 

well as the development of turbulent models will be considered in future work. 

 

ACKNOWLEDGEMENTS 

 This work was supported through the research project on “Mirco Gas Turbine/Fuel Cell 

Hybrid-type Distributed Energy System” by the Department of Core Research for Evolutional 

Science and Technology (CREST) of Japan Science and Technology Corporation (JST). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 18



H. Wu & N. Kasagi, Phys. Fluids 16, 979-990 (2004) 
  

 

 

REFERENCES 

1. J. P. Johnston, R. M. Halleen, and D. K. Lezius, “Effects of spanwise rotation on the structure 

of two-dimensional fully developed turbulent channel flow,” J. Fluid Mech. 56, 533 (1972). 

2. K. Nakabayashi, and O. Kitoh, “Low Reynolds number fully developed two-dimensional 

turbulent channel flow with system rotation,” J. Fluid Mech. 315, 1 (1996).  

3. J. Kim, “The effect of rotation on turbulence structure,” in Proceedings of the Fourth 

International Symposium on Turbulent Shear Flows, Karlsruhe, Germany, 1982, pp. 6.14-6.19. 

4. Y. Miyake and T. Kajishima, “Numerical simulation of the effects of Coriolis force on the 

structure of turbulence. Global effects,” Bull. JSME 29, 3341 (1986a). 

5. Y. Miyake and T. Kajishima, “Numerical simulation of the effects of Coriolis force on the 

structure of turbulence. Structure of turbulence,” Bull. JSME 29, 3347 (1986b). 

6. U. Piomelli and J. Liu, “Large-eddy simulation of rotating channel flows using a localized 

dynamic model,” Phys. Fluids 7, 839 (1995). 

7. M. Tsubokura, T. Kobayashi, N. Taniguchi, and T. Kogaki, “Subgrid scale modeling for 

turbulence in rotating reference frames,” J. Wind Eng. Ind. Aerod. 81, 361 (1999). 

8. B. E. Launder, D. P. Tselspidakis, and B. A. Younis, “A second-moment closure study of rotating 

channel flow,” J. Fluid Mech. 183, 63 (1987). 

9. Y. Shimomura, “A statistically derived two-equation model of turbulent hear flows in a rotating 

system,” J. Phys. Soc. Jpn. 58, 352 (1989). 

10. T. B. Gatski and C. G. Speziale, “On explicit algebraic stress models for complex turbulent 

flows,” J. Fluid Mech. 254, 59 (1993). 

11. B. E. Launder and D. P. Tselspidakis, “Application of a new second-moment closure to turbulent 

channel flow rotating in orthogonal mode,” Int. J. Heat Fluid Flow 15, 2 (1993).  

 19



H. Wu & N. Kasagi, Phys. Fluids 16, 979-990 (2004) 
  

12. Y. Nagano and H. Hattori, “An improve turbulence model for rotating shear flows,” Journal of 

Turbulence 3, 1 (2002). 

13. R. Kristoffersen and H. I. Andersson, “Direct simulations of low-Reynolds-number turbulent 

flow in a rotating channel,” J. Fluid Mech. 256, 163 (1993). 

14. O. Elsamni and N. Kasagi, “The effects of system rotation with three orthogonal rotating axes 

on turbulent channel flow,” in Proceedings of 7th International Congress on Fluid Dynamics and 

Propulsion, Cairo, Egypt, December18-20, 2001, CD-ROM. 

15. E. Lamballais, O. Metais, and M. Lesieur, “Spectral-dynamical model for large-eddy 

simulations of turbulent rotating channel flow,” Theoret. Comput. Fluid Dynamics 12, 149 (1998).  

16. M. Oberlack, W. Cabot, and M. M. Rogers, “Turbulent channel flow with streamwise rotation; 

Lie group analysis, DNS and modeling,” in Proceedings of the First International Symposium on 

Turbulence and Shear Flow Phenomena, Santa Barbara, USA, September 12-15, 1999, pp. 85-90. 

17. J. Kim, P. Moin, and R. Moser, “Turbulence statistics in fully developed channel flow at low 

Reynolds number,” J. Fluid Mech. 177, 133 (1987).  

18. P. Bradshaw, “The analogy between streamline curvature and buoyancy in turbulent shear flow,” 

J. Fluid Mech. 36, 177 (1969). 

19. D. J. Tritton, “Stabilization and destabilization of turbulent shear flow in a rotating fluid,” J. 

Fluid Mech. 241, 503 (1992).  

20. O. Sendstad and P. Moin, “The near wall mechanics of three-dimensional turbulent boundary 

layer,” Rep. TF-57, Thermosciences division, Department of Mechanical Engineering, Stanford 

University.  

 

 

 

 

 20



H. Wu & N. Kasagi, Phys. Fluids 16, 979-990 (2004) 
  

 

 

TABLES 

TABLE I. Production terms due to the mean shear ( ) and the system rotation (ijP ijR ) in the case of combined 

SP/ST.  
 
ij  11 22 33 12 13 23 

ijP  2uvdU dy−  0 2vwdW dy− 2v dU dy−  uvdW dy vwdU dy− −  2v dW dy−  

ijR  2 zRo uv  2 2x zRo vw Ro uv−  2 xRo vw−  2 2( )x zRo uw Ro v u+ − x zRo uv Ro vw− +  2 2( )x zRo w v Ro uw− −

 
 
 
 
TABLE II. Computed and estimated slopes of the linear region in U  in Case IV 
 

xRo  yRo  /dU dy  sinxRo α−  

2.5 0.04 -1.1 -1.3 

5.0 0.04 -2.2 -2.5 

7.5 0.04 -2.5 -3.5 

11.0 0.04 -3.7 -5.1 

15.0 0.04 -4.4 -7.0 
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FIGURE CAPTIONS 

 

Figure 1. (a) Schematic of the computation domain and the arbitrary directional rotation vector, and 

Coriolis force components in combined SP/ST (b), combined ST/WN (c), and combined WN/SP 

(d).  

Figure 2. (a) Comparison of the friction velocities in spanwise rotating channels. , present DNS; 

, experiment by Johnston et al.

▲

× 1; , DNS of Kristoffersen and Andersson○ 12; , DNS of 

Lamballais et al.

,

14; and , LES of Miyake and Kajishima+ 3, 4; and (b) comparison of the mean 

velocities at and  with different computation domain sizes. Symbols: 15xRo = 0.04yRo =

8 4πδ πδ×  in - and -directions. Lines: x z 5 2πδ πδ×  in - and -directions.  x z

Figure 3. Statistics in Case I. (a) Friction coefficient; (b) streamwise mean velocity (pressure side: 

, suction side: 1y = − 1y = ); (c) spanwise mean velocity; (d) rms streamwise velocity fluctuation; 

(e) rms wall-normal velocity fluctuation; and (f) rms spanwise velocity fluctuation. 

Figure 4. Time traces of the Reynolds stresses at 30y+ =  on the suction side with a sudden change 

of β  from  to  at   in Case I. (a) 30° 45° 0t+ = uu , ww  and uw ; (b) vv  and uv ; and (c) 

vw . 

Figure 5. Statistics in Case II. (a) Friction coefficient; (b) streamwse mean velocity (pressure side: 

, suction side: 1y = − 1y = ); (c) spanwise mean velocity; (d) Reynolds stress term uv ; and (e) 

Reynolds stress term vw . 

Figure 6. Definition of a new coodinate system in Cases III and IV. (a) Bulk mean velocities in the 

initial coodinate system; (b) definition of a new coordinate system; (c) ST in the new coordinate 

system; and (d) SP in the new coordinate system.  

Figure 7. Statistics in Case III. (a) Local flow angle  (pressure side: 1tan ( / )l W Uα −= 1y = , 
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suction side: ); (b) -direction friction coefficient; (c) mean velocity in the ' -direction; 

and (d) mean velocity in the -direction.  

1y = − 'x x

'z

Figure 8. Statistics in Case IV. (a) Streamwise friction coefficient; and (b) mean velocities (pressure 

side: , suction side: 1y = − 1y = ). 

Figure 9. (a) Streamlines of the secondary flow averaged in the streamwise direction and over a 

time period of 04 / uτδ  at (solid line: positive rotation; dashed line: negative rotation; 

pressure side: , suction side: 

2.5zRo =

1y = − 1y = ); (b) instantaneous velocity fluctuation vectors in several 

y-z planes at  and (pressure side: lower wall, suction side: upper wall).  15xRo = 2.5zRo =

Figure 10. Instantaneous velocity fluctuation vectors in several y-z planes at 15xRo =  and 

 (pressure side: upper wall, suction side: lower wall).  0.04yRo =

Figure 11. Streaky structures at  in a spanwise rotating channel and in Case II. Pressure 

side (a) and suction side (b) at  and 

12y+ =

0xRo = 2.5zRo = ; and pressure side (c) and suction side (d) 

at  and . 15xRo = 2.5zRo =

Figure 12. (a) Distribution of streamwise and spanwise velcity fluctuations around a positive 

rotating vortex; (b) velocity gradient u z∂ ∂  by vortices (“+” and “-” denote positive and negative 

rotating vortices, respectively); distributions of streamwise velocity fluctuations (solid line: 

positive; dashed line: negative) around positive (c) and negative (d) rotating vortexes (bold lines) 

defined by  at  and 2 0.02Q+ < − 15xRo = 2.5zRo = ; and (e) probability density function of xω  

with the condition  at 2 0.02Q+ < − 15xRo =  and 2.5zRo = .  

Figure 13. Streaky structures at  in a non-rotating channel and in Case III. (a) non-rotating 

channel; and pressure side (b) and suction side (c) at 

12y+ =

15xRo =  and 0.04yRo = .  
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